• Manual therapy · Feb 2015

    Observational Study

    The clinical utility of pain classification in non-specific arm pain.

    • Niamh A Moloney, Toby M Hall, Andrew M Leaver, and Catherine M Doody.
    • UCD School of Public Health, Physiotherapy and Population Science, University College Dublin, Belfield, Dublin 4, Ireland; Discipline of Physiotherapy, Faculty of Health Sciences, The University of Sydney, PO Box 170, Lidcombe, NSW 1825, Australia. Electronic address: niamh.moloney@sydney.edu.au.
    • Man Ther. 2015 Feb 1; 20 (1): 157-65.

    AbstractMechanisms-based pain classification has received considerable attention recently for its potential use in clinical decision making. A number of algorithms for pain classification have been proposed. Non-specific arm pain (NSAP) is a poorly defined condition, which could benefit from classification according to pain mechanisms to improve treatment selection. This study used three published classification algorithms (hereafter called NeuPSIG, Smart, Schafer) to investigate the frequency of different pain classifications in NSAP and the clinical utility of these systems in assessing NSAP. Forty people with NSAP underwent a clinical examination and quantitative sensory testing. Findings were used to classify participants according to three classification algorithms. Frequency of pain classification including number unclassified was analysed using descriptive statistics. Inter-rater agreement was analysed using kappa coefficients. NSAP was primarily classified as 'unlikely neuropathic pain' using NeuPSIG criteria, 'peripheral neuropathic pain' using the Smart classification and 'peripheral nerve sensitisation' using the Schafer algorithm. Two of the three algorithms allowed classification of all but one participant; up to 45% of participants (n = 18) were categorised as mixed by the Smart classification. Inter-rater agreement was good for the Schafer algorithm (к = 0.78) and moderate for the Smart classification (к = 0.40). A kappa value was unattainable for the NeuPSIG algorithm but agreement was high. Pain classification was achievable with high inter-rater agreement for two of the three algorithms assessed. The Smart classification may be useful but requires further direction regarding the use of clinical criteria included. The impact of adding a pain classification to clinical assessment on patient outcomes needs to be evaluated.Copyright © 2014 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.