• Anesthesiology · Sep 2005

    Oxygen attenuates atelectasis-induced injury in the in vivo rat lung.

    • Michelle Duggan, Patrick J McNamara, Doreen Engelberts, Cecil Pace-Asciak, Paul Babyn, Martin Post, and Brian P Kavanagh.
    • Programs in Lung and Integrative Biology, The Research Institute, Department of Critical Care Medicine, The Hosptial for Sick Children and the University of Toronto, Ontario, Canada.
    • Anesthesiology. 2005 Sep 1; 103 (3): 522-31.

    BackgroundAtelectasis results in impaired compliance and gas exchange and, in extreme cases, increased microvascular permeability, pulmonary hypertension, and right ventricular dysfunction. It is not known whether such atelectasis-induced lung injury is due to the direct mechanical effects of lung volume reduction and alveolar collapse or due to the associated regional lung hypoxia. The authors hypothesized that addition of supplemental oxygen to an atelectasis-prone ventilation strategy would attenuate the pulmonary vascular effects and reduce the local levels of vasoconstrictor eicosanoids.MethodsIn series 1, anesthetized, atelectasis-prone mechanically ventilated rats were randomly assigned to one of six groups based on the inspired oxygen concentration and ventilated without recruitment. Series 2 was performed to determine the cardiac and pulmonary vascular effects of 21% versus 100% inspired oxygen. In series 3, computed tomography scans were performed after ventilation with a recruitment strategy (21% O2) or no recruitment strategy (21% O2 or 100% O2). In series 4, functional residual capacity was measured in animals where the gas was 21% or 100% O2.ResultsThe partial pressure of arterial oxygen increased with increasing inspired oxygen, but the alveolar-arterial oxygenation gradient was also greater with higher inspired oxygen. Ventilation with 21% O2 (but not with 100% O2) was associated with progressive pulmonary vascular impedance and increased pulmonary vascular permeability. Prostaglandin F2alpha was increased by mechanical ventilation, especially without supplemental oxygen. Computed tomography scans demonstrated no atelectasis in recruited lungs, and atelectasis in nonrecruited lungs that was greater with supplemental oxygen. Increased atelectasis with 100% O2 (vs. 21% O2) was demonstrated by measurement of functional residual capacity.ConclusionsAlthough supplemental oxygen worsened atelectasis in this model, it prevented the pathologic effects of atelectasis, including microvascular leak and pulmonary hypertension. Atelectasis-induced lung injury seems to be mediated by hypoxia rather than by the direct mechanical effects of atelectasis.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.