• Int. J. Radiat. Oncol. Biol. Phys. · Sep 2011

    Assessment of tumor radioresponsiveness and metastatic potential by dynamic contrast-enhanced magnetic resonance imaging.

    • Kirsti Marie Øvrebø, Kristine Gulliksrud, Berit Mathiesen, and Einar K Rofstad.
    • Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
    • Int. J. Radiat. Oncol. Biol. Phys. 2011 Sep 1; 81 (1): 255-61.

    PurposeIt has been suggested that gadolinium diethylene-triamine penta-acetic acid (Gd-DTPA)-based dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) may provide clinically useful biomarkers for personalized cancer treatment. In this preclinical study, we investigated the potential of DCE-MRI as a noninvasive method for assessing the radioresponsiveness and metastatic potential of tumors.Methods And MaterialsR-18 melanoma xenografts growing in BALB/c nu/nu mice were used as experimental tumor models. Fifty tumors were subjected to DCE-MRI, and parametric images of Ktrans (the volume transfer constant of Gd-DTPA) and ve (the fractional distribution volume of Gd-DTPA) were produced by pharmacokinetic analysis of the DCE-MRI series. The tumors were irradiated after the DCE-MRI, either with a single dose of 10 Gy for detection of radiobiological hypoxia (30 tumors) or with five fractions of 4 Gy in 48 h for assessment of radioresponsiveness (20 tumors). The host mice were then euthanized and examined for lymph node metastases, and the primary tumors were resected for measurement of cell survival in vitro.ResultsTumors with hypoxic cells showed significantly lower Ktrans values than tumors without significant hypoxia (p<0.0001, n=30), and Ktrans decreased with increasing cell surviving fraction for tumors given fractionated radiation treatment (p<0.0001, n=20). Tumors in metastasis-positive mice had significantly lower Ktrans values than tumors in metastasis-negative mice (p<0.0001, n=50). Significant correlations between ve and tumor hypoxia, radioresponsiveness, or metastatic potential could not be detected.ConclusionsR-18 tumors with low Ktrans values are likely to be resistant to radiation treatment and have a high probability of developing lymph node metastases. The general validity of these observations should be investigated further by studying preclinical tumor models with biological properties different from those of the R-18 tumors.Copyright © 2011 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.