• Microvascular research · Jul 1997

    Comparative Study

    Effects of hypoxia and hypercapnia on capillary flow velocity in the rat cerebral cortex.

    • A G Hudetz, B B Biswal, G Fehér, and J P Kampine.
    • Department of Anesthesiology and Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA.
    • Microvasc. Res. 1997 Jul 1; 54 (1): 35-42.

    AbstractThe velocity of red blood cells (RBC) in individual capillaries of the rat cerebral cortex was assessed using direct, intravital video microscopy under normal conditions and during systemic hypoxia or hypercapnia. The movement of RBC in capillaries within 50-microm depth of the parietal cortex was visualized with the aid of fluorescent labeling of RBC in a closed cranial window preparation in pentobarbital-anesthetized, artificially ventilated adult rats. Hypoxia was produced by lowering the concentration of oxygen in the inspired gas from 30 to 15% for 5 min. Hypercapnia was achieved by increasing the inspired CO2 concentration (FiCO2) from 0 to 5% and then to 10% for 5 min at each level. The mean arterial pressure was maintained constant during both maneuvers. Under control conditions, fast and heterogeneous RBC flow in multioriented, tortuous capillaries was observed. During hypoxia, RBC velocity increased from 0.61 +/- 0.06 to 0.82 +/- 0.10 mm/sec (35% change). During hypercapnia, RBC velocity increased from 0.73 +/- 0.05 to 1.07 +/- 0. 11 mm/sec (46% change) at 5% CO2 and to 1.19 +/- 0.11 mm/sec (63% change) at 10% CO2. Corresponding changes in regional blood flow as assessed by laser-Doppler flowmetry during hypercapnia were 69 +/- 7 and 128 +/- 21%, respectively. The RBC velocity increased in almost all capillaries during hypoxia and during moderate hypercapnia. However, a substantial number of capillaries showed no change or a small decrease in RBC velocity during severe hypercapnia. A significant negative correlation between the velocity change at 10% CO2 and the normocapnic resting velocity was found in a group of capillaries isolated by cluster analysis. These results suggest that the dominant component of cerebral hyperemic response to hypoxia and to moderate hypercapnia is an increase in capillary RBC flow velocity. A more complex change in the velocity distribution occurs during severe hypercapnia and results in increased homogeneity of RBC perfusion in the cerebrocortical capillary network.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…