-
- Almut Grenz, Jessica D Bauerle, Julee H Dalton, Douglas Ridyard, Alexander Badulak, Eunyoung Tak, Eóin N McNamee, Eric Clambey, Radu Moldovan, German Reyes, Jost Klawitter, Kelly Ambler, Kristann Magee, Uwe Christians, Kelley S Brodsky, Katya Ravid, Doo-Sup Choi, Jiaming Wen, Dmitriy Lukashev, Michael R Blackburn, Hartmut Osswald, Imogen R Coe, Bernd Nürnberg, Volker H Haase, Yang Xia, Michail Sitkovsky, and Holger K Eltzschig.
- Mucosal Inflammation Program, Department of Anesthesiology, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA.
- J. Clin. Invest. 2012 Feb 1; 122 (2): 693-710.
AbstractA complex biologic network regulates kidney perfusion under physiologic conditions. This system is profoundly perturbed following renal ischemia, a leading cause of acute kidney injury (AKI) - a life-threatening condition that frequently complicates the care of hospitalized patients. Therapeutic approaches to prevent and treat AKI are extremely limited. Better understanding of the molecular pathways promoting postischemic reflow could provide new candidate targets for AKI therapeutics. Due to its role in adapting tissues to hypoxia, we hypothesized that extracellular adenosine has a regulatory function in the postischemic control of renal perfusion. Consistent with the notion that equilibrative nucleoside transporters (ENTs) terminate adenosine signaling, we observed that pharmacologic ENT inhibition in mice elevated renal adenosine levels and dampened AKI. Deletion of the ENTs resulted in selective protection in Ent1-/- mice. Comprehensive examination of adenosine receptor-knockout mice exposed to AKI demonstrated that renal protection by ENT inhibitors involves the A2B adenosine receptor. Indeed, crosstalk between renal Ent1 and Adora2b expressed on vascular endothelia effectively prevented a postischemic no-reflow phenomenon. These studies identify ENT1 and adenosine receptors as key to the process of reestablishing renal perfusion following ischemic AKI. If translatable from mice to humans, these data have important therapeutic implications.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.