• Plos One · Jan 2014

    Observational Study

    Nurses and physicians in a medical admission unit can accurately predict mortality of acutely admitted patients: a prospective cohort study.

    • Mikkel Brabrand, Jesper Hallas, and Torben Knudsen.
    • Department of Medicine, Hospital of South West Denmark, Esbjerg, Denmark; Centre South Western Denmark, Institute of Regional Health Research - University of Southern Denmark, Esbjerg, Denmark.
    • Plos One. 2014 Jan 1; 9 (7): e101739.

    BackgroundThere exist several risk stratification systems for predicting mortality of emergency patients. However, some are complex in clinical use and others have been developed using suboptimal methodology. The objective was to evaluate the capability of the staff at a medical admission unit (MAU) to use clinical intuition to predict in-hospital mortality of acutely admitted patients.MethodsThis is an observational prospective cohort study of adult patients (15 years or older) admitted to a MAU at a regional teaching hospital. The nursing staff and physicians predicted in-hospital mortality upon the patients' arrival. We calculated discriminatory power as the area under the receiver-operating-characteristic curve (AUROC) and accuracy of prediction (calibration) by Hosmer-Lemeshow goodness-of-fit test.ResultsWe had a total of 2,848 admissions (2,463 patients). 89 (3.1%) died while admitted. The nursing staff assessed 2,404 admissions and predicted mortality in 1,820 (63.9%). AUROC was 0.823 (95% CI: 0.762-0.884) and calibration poor. Physicians assessed 738 admissions and predicted mortality in 734 (25.8% of all admissions). AUROC was 0.761 (95% CI: 0.657-0.864) and calibration poor. AUROC and calibration increased with experience. When nursing staff and physicians were in agreement (±5%), discriminatory power was very high, 0.898 (95% CI: 0.773-1.000), and calibration almost perfect. Combining an objective risk prediction score with staff predictions added very little.ConclusionsUsing only clinical intuition, staff in a medical admission unit has a good ability to identify patients at increased risk of dying while admitted. When nursing staff and physicians agreed on their prediction, discriminatory power and calibration were excellent.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.