• Anesthesia and analgesia · Jan 2003

    Modulation of GABA(A) receptor function by nonhalogenated alkane anesthetics: the effects on agonist enhancement, direct activation, and inhibition.

    • Douglas E Raines, Robert J Claycomb, and Stuart A Forman.
    • Department of Anesthesia, Harvard Medical School, Boston, Massachusetts, USA. DRaines@partners.org
    • Anesth. Analg. 2003 Jan 1; 96 (1): 112-8, table of contents.

    UnlabelledAt clinically relevant concentrations, ethers, alcohols, and halogenated alkanes enhance agonist action on the gamma-aminobutyric acid(A) (GABA(A)) receptor, whereas nonhalogenated alkanes do not. Many anesthetics also directly activate and/or inhibit GABA(A) receptors, actions that may produce important behavioral effects; although, the effects of nonhalogenated alkane anesthetics on GABA(A) receptor direct activation and inhibition have not been studied. In this study, we assessed the abilities of two representative nonhalogenated alkanes, cyclopropane and butane, to enhance agonist action, directly activate, and inhibit currents mediated by expressed alpha(1)beta(2)gamma(2L) GABA(A) receptors using electrophysiological techniques. Our studies reveal that cyclopro- pane and butane enhance agonist action on the GABA(A) receptor at concentrations that exceed those required to produce anesthesia. Neither nonhalogenated alkane directly activated nor inhibited GABA(A) receptors, even at concentrations that approach their aqueous saturated solubilities. These results strongly suggest that the behavioral actions of nonhalogenated alkane anesthetics do not result from their abilities to enhance agonist actions, directly activate, or inhibit alpha(1)beta(2)gamma(2L) GABA(A) receptors and are consistent with the hypothesis that electrostatic interactions between anesthetics and their protein binding sites modulate GABA(A) receptor potency.ImplicationsWhen normalized to either their in vivo anesthetic potencies or hydrophobicities, cyclopropane and butane are 1-1.5 orders of magnitude less potent enhancers of agonist action on alpha(1beta2gamma2L) GABA(A) receptors than isoflurane. Additionally, cyclopropane and butane fail to directly activate or inhibit receptors, even at near aqueous saturating concentrations. Thus, it is unlikely that either enhancement or inhibition of the most common GABA(A) receptor subtype in the brain accounts for the behavioral activities of cyclopropane and butane.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…