-
- M Fu and L Xu.
- Department of Electrical Engineering, The Ohio State University, Columbus 43210, USA.
- ASAIO J. 2000 May 1; 46 (3): 273-8.
AbstractRotary blood pumps have been considered effective permanently implantable devices. However, control of such pumps is quite complicated. Sensorless control of pump flow is required because no invasive flow or pressure sensors are wanted. Whereas insufficient pump output can cause underperfusion and should be avoided, overpumping may cause ventricular collapse and must be prevented. An intelligent physiologic control algorithm is highly desirable to reach optimal pump output based on physiologic requirements. We present an intelligent physiologic control mechanism for the blood pump allowing it to achieve normal physiology. Sensorless control of pump flow is gained by analysis of the electric motor current and speed. The required pump output flow is chosen based on heart rate, and an intelligent fuzzy logic based control mechanism is developed to adjust the motor input so that the pump output can reach required flow while also preventing the occurrence of ventricular suction or cannular collapse. Computer simulation was carried out, and the results indicate that the proposed algorithms can achieve required pump flow to obtain normal physiology, whereas overpumping can be prevented to provide safe operation.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.