• Proc Inst Mech Eng H · Nov 2011

    Development and in vitro evaluation of a flow-adjustable elastic drug infusion pump.

    • S W Choi, S M Kang, H Y Kim, and K W Nam.
    • Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon, Korea.
    • Proc Inst Mech Eng H. 2011 Nov 1; 225 (11): 1070-7.

    AbstractPassive-type drug infusion pumps have several advantages over active-type pumps including a simple drug chamber structure and relatively high operational stability. However, conventional passive-type infusion pumps also have several limitations compared to active ejection pumps, such as a fixed flowrate and monotonic flow pattern. To enhance the clinical feasibility of using passive-type drug infusion pumps, flow readjustment and flow regulation abilities are needed. This paper proposes a new portable elastic drug infusion pump that integrates the advantages of active and passive infusion pumps to improve clinical feasibility. The proposed infusion pump incorporates a passively driven drug chamber and an actively adjusted flow controller, which can adjust and regulate various target flowrates and adjust the flow pattern in accordance with the patient's time-varying physiological status. The proposed infusion pump uses the contraction force of an expanded elastic membrane to extract the drug from the drug chamber for delivery into the patient's body through an outlet catheter. It also utilizes a flow sensor, a flow resistor, and a motor-driven flow restrictor that can monitor the real-time flowrate through the outlet catheter and automatically regulate the actual flow-rate around the target value. Experiments on the proposed system resulted in actual injection rates of 0.49 +/- 0.03 (mean +/- standard deviation), 0.98 +/- 0.03, 1.49 +/- 0.04, and 1.99 +/- 0.03 ml/h when the target injection rate was set to 0.5, 1.0, 1.5, and 2.0 ml/h, respectively. During the entire period of operation from the fully filled state to the totally empty state, an inner-chamber pressure of >100 mmHg was maintained, which shows that the proposed infusion pump can stably maintain its target flowrate as the amount of drug remaining to be injected decreases. It appears that the proposed drug infusion pump can be applied to a wide variety of patient treatments that require short-term, accurate, and stable drug delivery.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…