• Electromyogr Clin Neurophysiol · Jan 2010

    Phase relation changes between the firings of alpha and gamma-motoneurons and muscle spindle afferents in the sacral micturition centre during continence functions in brain-dead human and patients with spinal cord injury.

    • G Schalow.
    • g_schalow@hotmail.com
    • Electromyogr Clin Neurophysiol. 2010 Jan 1; 50 (1): 3-27.

    Abstract1. Single-nerve fibre action potentials (APs) were recorded with 2 pairs of wire electrodes from lower sacral nerve roots during surgery in patients with spinal cord injury and in a brain-dead human. Conduction velocity distribution histograms were constructed for afferent and efferent fibres, nerve fibre groups were identified and simultaneous impulse patterns of alpha and gamma-motoneurons and secondary muscle spindle afferents (SP2) were constructed. Temporal relations between afferent and efferent APs were analyzed by interspike interval (II) and phase relation changes to explore the coordinated self-organization of somatic and parasympathetic neuronal networks in the sacral micturition centre during continence functions under physiologic (brain-dead) and pathophysiologic conditions (spinal cord injury). 2. In a paraplegic with hyperreflexia of the bladder, urinary bladder stretch (S1) and tension receptor afferents (ST) fired already when the bladder was empty, and showed a several times higher bladder afferent activity increase upon retrograde bladder filling than observed in the brain-dead individual. Two alpha2-motoneurons (FR) innervating the external bladder sphincter were already oscillatory firing to generate high activity levels when the bladder was empty. They showed activity levels with no bladder filling, comparable to those measured at a bladder filling of 600 ml in the brain-dead individual. A bladder storage volume of 600 ml was thus lost in the paraplegic, due to a too high bladder afferent input to the sacral micturition center, secondary to inflammation and hypertrophy of the detrusor. 3. In a brain-dead human, 2 phase relations existed per oscillation period of 160 ms between the APs of a sphincteric oscillatory firing alpha2-motoneuron, a dynamic fusimotor and a secondary muscle spindle afferent fibre. Following stimulation of mainly somatic afferent fibres, the phase relations changed only little. 4. In a paraplegic with dyssynergia of the urinary bladder also 2 phase relations (less stable) existed per oscillation period of 110 ms in a functional unit between the APs of a sphincteric alpha-motoneuron, a fusimotor and a secondary spindle afferent fibre. The phase relations changed with time following stimulation of mainly somatic afferents. A second functional unit organized by phase related interactions was phase related to the first functional unit. 5. Following painful bladder catheter pulling, the parasympathetic division was transiently activated several times in the paraplegic. At times of activation of the parasympathetic division, 3 broad phase relations occurred within and between the two functional units, indicating that the parasympathetic division in the sacral micturition and defecation center channeled an additional input to the somatic oscillatory firing neuronal networks driving motoneurons which innervate the external bladder and/or anal sphincters. 6. It is conceivable that the mutual inhibitory action of detrusor and external bladder sphincter has the capacity to recover, if the functional neuronal organization of the sacral micturition center is improved in the direction of more stable phase relations between the firings of neurons and neuronal ensembles by natural coordinated afferent inputs from continence organs, supraspinal neurons, and functionally connected neuronal networks. For supraspinal control and improvement of neuronal organization some kinds of bulbo-spinal-bulbo pathways have to exist or to be reconstructed by regeneration. 7. It will be shown in a following article that the sacral micturition centre can be repaired after spinal cord injury by a functional reorganization and limited regeneration of the human spinal cord by administering coordination dynamics therapy.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.