• Journal of neurosurgery · Jul 1996

    A use-dependent sodium channel antagonist, 619C89, in reduction of ischemic brain damage and glutamate release after acute subdural hematoma in the rat.

    • E Tsuchida, J F Harms, J J Woodward, and R Bullock.
    • Department of Neurosurgery, Medical College of Virginia, Virginia Commonwealth University, Richmond, USA.
    • J. Neurosurg. 1996 Jul 1; 85 (1): 104-11.

    AbstractAcute subdural hematoma kills or disables more severely head injured patients than any other complication of cranial trauma. The main pathological factor involved is ischemic neuronal damage, which is caused by raised intracranial pressure and local effect. The authors have evaluated the hypothesis that a novel use-dependent sodium channel antagonist, 619C89, could reduce ischemic brain damage in the rat subdural hematoma model. Because previous studies have shown that focal neuronal damage may be mediated by "excitotoxic" mechanisms, and because excitatory amino acid levels have been shown to be markedly elevated after brain trauma in humans, the authors have measured levels of glutamate, aspartate, and threonine within the cortex underneath the hematoma, using in vivo microdialysis before and after induction of hematoma, in both vehicle- and drug-treated rats. Postinjury treatment with 619C89 (30 mg/kg) significantly reduced the volume of hemispheric ischemic damage produced by subdural hematoma, from 99.77 +/- 7.51 mm3 in vehicle-treated control rats to 46.07 +/- 11.06 mm3 (p = 0.0007) in drug-treated animals. In the vehicle-treated animals, induction of subdural hematoma led to a fourfold increase in glutamate in the first 30 minutes after subdural hematoma occurred. The mean extracellular glutamate concentration in these animals remained 2- to 2.6-fold increased over the following 2.5 hours. In the 619C89-treated animals, the release of glutamate from the cortex underneath the hematoma was significantly attenuated. In these rats, induction of subdural hematoma led to a 2.7-fold increase in the first 30-minute sample, but extracellular glutamate concentration returned to near-basal levels thereafter, compared with vehicle-treated animals (p < 0.05). These results show that 619C89 is highly neuroprotective in this model and that its effects may, in part, be mediated by the inhibition of glutamate release from the ischemic cortex underneath the hematoma.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.