• J. Appl. Physiol. · Jul 2001

    Selected contribution: effect of volatile anesthetics on cADP-ribose-induced Ca(2+) release system.

    • E N Chini.
    • Department of Anesthesia, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA. chini.eduardo@mayo.edu
    • J. Appl. Physiol. 2001 Jul 1; 91 (1): 516-21; discussion 504-5.

    AbstractVolatile anesthetics have multiple actions on intracellular Ca(2+) homeostasis, including activation of the ryanodine channel (RyR) and sensitization of this channel to agonists such as caffeine and ryanodine. Recently it has been described that the nucleotide cADP-ribose (cADPR) is the endogenous regulator of the RyR in many mammalian cells, and cADPR has been proposed to be a second messenger in many signaling pathways. I investigated the effect of volatile anesthetics on the cADPR signaling system, using sea urchin egg homogenates as a model of intracellular Ca(2+) stores. Ca(2+) uptake and release were monitored in sea urchin egg homogenates by using the fluo-3 fluorescence technique. Activity of the ADP-ribosyl cyclase was monitored by using a fluorometric method using nicotinamide guanine dinucleotide as a substrate. Halothane in concentrations up to 800 microM did not induce Ca(2+) release by itself in sea urchin egg homogenates. However, halothane potentiates the Ca(2+) release mediated by agonists of the ryanodine channel, such as ryanodine. Furthermore, other volatile anesthetics such as isoflurane and sevoflurane had no effect. Halothane also potentiated the activation of the ryanodine channel mediated by the endogenous nucleotide cADPR. The half-maximal concentration for cADPR-induced Ca(2+) release was decreased about three times by addition of 800 microM halothane. The reverse was also true: addition of subthreshold concentrations of cADPR sensitized the homogenates to halothane. In contrast, all the volatile anesthetics used had no effect on the activity of the enzyme that synthesizes cADPR. I propose that the complex effect of volatile anesthetics on intracellular Ca(2+) homeostasis may involve modulation of the cADPR signaling system.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.