-
- B D Winegar, D F Owen, C S Yost, J R Forsayeth, and E Mayeri.
- Department of Anesthesia, School of Medicine, University of California, San Francisco 94143-0648, USA.
- Anesthesiology. 1996 Oct 1; 85 (4): 889-900.
BackgroundThe mechanism by which volatile anesthetics act on neuronal tissue to produce reversible depression is unknown. Previous studies have identified a potassium current in invertebrate neurons that is activated by volatile anesthetics. The molecular components generating this current are characterized here in greater detail.MethodsThe cellular and biophysical effects of halothane and isoflurane on neurons of Aplysia californica were studied. Isolated abdominal ganglia were perfused with anesthetic-containing solutions while membrane voltage changes were recorded. These effects were also studied at the single-channel level by patch clamping cultured neurons from the abdominal and pleural ganglia.ResultsClinically relevant concentrations of halothane and isoflurane produced a slow hyperpolarization in abdominal ganglion neurons that was sufficient to block spontaneous spike firings. Single-channel studies revealed specific activation by volatile anesthetics of a previously described potassium channel. In pleural sensory neurons, halothane and isoflurane increased the open probability of the outwardly rectifying serotonin-sensitive channel (S channel). Halothane also inhibited a smaller noninactivating channel with a linear slope conductance of approximately 40 pS. S channels were activated by halothane with a median effective concentration of approximately 500 microM (0.013 atm), which increased channel activity about four times. The mechanism of channel activation involved shortening the closed-time durations between bursts and apparent recruitment of previously silent channels.ConclusionsThe results demonstrate a unique ability of halothane and isoflurane to activate a specific class of potassium channels. Because potassium channels are important regulators of neuronal excitability within the mammalian central nervous system, background channels such as the S channel may be responsible in part for mediating the action of volatile anesthetics.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.