• Shock · Sep 2005

    Randomized Controlled Trial Clinical Trial

    Oxygent as a top load to colloid and hyperoxia is more effective in resuscitation from hemorrhagic shock than colloid and hyperoxia alone.

    • Gregor I Kemming, Franz G Meisner, Christoph J Wojtczyk, Kristian B Packert, Thomas Minor, Manfred Thiel, Jochen Tillmanns, Jens Meier, Daniel Bottino, Peter E Keipert, Simon Faithfull, and Oliver P Habler.
    • Institute for Surgical Research, Klinikum Grosshadern, Ludwig-Maximilians-University Munich, 81377, Germany.
    • Shock. 2005 Sep 1; 24 (3): 245-54.

    AbstractPerfluorocarbon (PFC) emulsions are intravascular oxygen therapeutics that temporarily enhance tissue oxygenation in dilutional anemia. However, PFC emulsions are not resuscitation fluids because PFCs only work optimally in the presence of high O2 partial pressure (hyperoxia); moreover, because they have no oncotic potential, dosing limitations prevent their use to permanently replace large hemorrhage volumes. Our objective was to clarify whether in the presence of hyperoxia a conventional colloid therapy supplemented by PFC is more efficacious than colloid alone. To answer this question, 22 anesthetized, ventilated dogs were hemorrhaged to a mean arterial pressure of 45 mmHg and were kept at this level until a metabolic O2 debt of 120 mL kg(-1) body weight had evolved. Hyperoxia was established and dogs were randomly allocated to receive colloid (6% HES, Hydroxy Ethyl Starch shed blood volume) or colloid together with Oxygent (perflubron emulsion, 60%, w/v; Alliance Pharmaceutical Corp., San Diego, CA; single dose, 4.5 mL kg(-1); i.e., 2.7 g PFC kg body weight) in a blinded fashion. Hemodynamic and O2 transport parameters, intestinal mucosal blood flow (microspheres), and O2 partial pressure (MDO-Electrode; Eschweiler, Kiel, Germany) were measured at baseline, in shock, and during 3 h post-therapy. In the presence of hyperoxia, Oxygent improved the amount of physically dissolved O2 in plasma and increased the contribution of physically dissolved O2 to global O2 delivery (P < 0.05) and thus whole body O2 consumption when compared with colloid alone (P < 0.05). As a result, Oxygent reduced intestinal mucosal hypoxia and global O2 debt within the first hour post-therapy (P < 0.05). We conclude that under hyperoxic conditions, fluid resuscitation supplemented by Oxygent was more efficacious than colloid and hyperoxia alone. PFC temporarily enhanced intestinal mucosal tissue oxygenation during resuscitation.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…