• Acta Anaesthesiol Scand · Nov 2000

    Improved cerebral blood supply and oxygenation by aortic balloon occlusion combined with intra-aortic vasopressin administration during experimental cardiopulmonary resuscitation.

    • A Nozari, S Rubertsson, and L Wiklund.
    • Department of Anesthesiology and Intensive Care, Uppsala University Hospital, Sweden. ala.nozari@anestesi.uu.se
    • Acta Anaesthesiol Scand. 2000 Nov 1; 44 (10): 1209-19.

    BackgroundIntravenous administration of vasopressin during cardiopulmonary resuscitation (CPR) has been shown to improve myocardial and cerebral blood flow. Aortic balloon occlusion during CPR may also augment myocardial and cerebral blood flow and can be used as a central route for the administration of resuscitative drugs. We hypothesized that, as compared with intravenously administered vasopressin, the administration of this drug above the site of an aortic balloon occlusion would result in a greater increase in cerebral perfusion and oxygenation during CPR and after restoration of spontaneous circulation (ROSC).MethodsTwenty piglets were subjected to 5 min of ventricular fibrillation followed by 8 min of closed-chest CPR and were treated with 0.4 U kg(-1) boluses of vasopressin intravenously (the IV-vasopressin group with sham aortic balloon) or above the site for an aortic balloon occlusion (the balloon-vasopressin group). The aortic balloon catheter was inflated in the latter group 1 min after commencement of CPR and was deflated within 1 min after ROSC. Systemic blood pressures, cerebral cortical blood flow, cerebral tissue pH and PCO2 were monitored continuously and the cerebral oxygen extraction ratio was calculated.ResultsDuring CPR, arterial blood pressure and cerebral perfusion pressure were greater in the balloon-vasopressin group, as compared with the IV-vasopressin group. These pressures did not differ between the groups after ROSC. Cerebral cortical blood flow was not significantly greater in the balloon-vasopressin group during CPR, whereas significantly higher cortical blood flow levels were recorded after ROSC. Cerebral tissue pH decreased in the IV-vasopressin group during the post-resuscitation hypoperfusion period. In contrast, decreasing pressures during the hypoperfusion period did not result in increasing tissue acidosis in the balloon-vasopressin group.ConclusionsDuring CPR, intra-aortic vasopressin combined with aortic balloon occlusion resulted in significantly greater perfusion pressures but not in greater cerebral cortical blood flow. After ROSC, however, a greater increase in cortical blood flow was recorded in the balloon-vasopressin group, even though the aortic balloon was deflated and perfusion pressures did not differ between the groups. This suggests that vasopressin predominantly gives vasoconstrictive effects on cerebral cortical vessels during CPR, but results in cerebral cortical vasodilatation after ROSC.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.