• Critical care medicine · Feb 2003

    Iron and iron-related proteins in the lower respiratory tract of patients with acute respiratory distress syndrome.

    • Andrew J Ghio, Jacqueline D Carter, Judy H Richards, Lori D Richer, Colin K Grissom, and Mark R Elstad.
    • National Health and Environmental Effects Research Laboratory, Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
    • Crit. Care Med. 2003 Feb 1; 31 (2): 395-400.

    ObjectiveAn increased oxidative stress in the lower respiratory tract of individuals with acute respiratory distress syndrome is considered to be one mechanism of lung injury in these patients. Cell and tissue damage resulting from an oxidative stress can ultimately be the consequence of a disruption of normal iron metabolism and an increased availability of catalytically active metal. Using bronchoalveolar lavage fluid, we quantified concentrations of iron and iron-related proteins in the lower respiratory tract in patients with acute respiratory distress syndrome and healthy volunteers.DesignA clinical study to quantify iron and iron-related proteins in the lower respiratory tract in patients with acute respiratory distress syndrome and healthy volunteers.PatientsWe studied 14 patients with acute respiratory distress syndrome and 28 healthy volunteers.Main ResultsComparable to previous investigation, protein, albumin, and cytokine concentrations in the bronchoalveolar lavage fluid were significantly increased in acute respiratory distress syndrome patients. The concentrations of total and nonheme iron were also increased in the lavage fluid of patients. Concentrations of hemoglobin, haptoglobin, transferrin, transferrin receptor, lactoferrin, and ferritin in the bronchoalveolar lavage fluid were all significantly increased in acute respiratory distress syndrome patients.ConclusionsWe conclude that bronchoalveolar lavage fluid indices reflect a disruption of normal iron metabolism in the lungs of acute respiratory distress syndrome patients. Increased concentrations of available iron in acute respiratory distress syndrome may participate in catalyzing oxidant generation destructive to the tissues of the lower respiratory tract. However, increased metal availability is also likely to elicit an increased expression of transferrin receptor, lactoferrin, and ferritin in the lower respiratory tract which will function to diminish this oxidative stress.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.