• J. Neurosci. · Aug 2000

    Mechanical allodynia caused by intraplantar injection of P2X receptor agonist in rats: involvement of heteromeric P2X2/3 receptor signaling in capsaicin-insensitive primary afferent neurons.

    • M Tsuda, S Koizumi, A Kita, Y Shigemoto, S Ueno, and K Inoue.
    • Section of Neuropharmacology, Division of Pharmacology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.
    • J. Neurosci. 2000 Aug 1; 20 (15): RC90.

    AbstractExtracellular ATP has been known to activate sensory neurons via the ATP-gated ion channels P2X receptors, indicating that the P2X receptors may play a role in signal transduction of pain from the periphery to the spinal cord in vivo. Here, we found a novel nociceptive response induced by ATP, mechanical allodynia (hypersensitivity to innocuous mechanical stimulus). Injection of alpha,beta-methylene ATP (alpha(beta)meATP), an agonist to P2X receptor, into plantar surface in rats produced the mechanical allodynia along with previously described nocifensive behavior and thermal hyperalgesia. This allodynic response was blocked by pretreatment with the P2 receptor antagonist pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate. Interestingly, only the mechanical allodynia evoked by alpha(beta)meATP selectively remained in neonatal capsaicin-treated adult rats that had selectively lost the capsaicin-sensitive neurons. ATP has been shown to produce two distinguishable electrophysiological responses (inward currents with rapid and slow desensitization) in dorsal root ganglion (DRG) neurons. In the present electrophysiological experiment, the percentage of DRG neurons that responded to alpha(beta)meATP with slow desensitizing inward current remained constant in capsaicin-treated rats, whereas the percentage that responded with rapid desensitizing current dramatically decreased. Taken together with our previous finding that the alpha(beta)meATP-activated slow desensitizing current in DRG neurons is mediated by heteromeric P2X2/3 (P2X2 and P2X3) receptors, it is hypothesized that activation of heteromeric P2X2/3 receptors in peripheral terminals of capsaicin-insensitive primary afferent fibers leads to the induction of mechanical allodynia.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.