• Anesthesiology · Mar 2015

    GABAergic Inhibition Regulated Pain Sensitization through STEP61 Signaling in Spinal Dorsal Horn of Mice.

    • Lu Li, Lei Shi, Ying-Ming Xu, Xian Yang, Zhan-Wei Suo, and Xiao-Dong Hu.
    • From the Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, People's Republic of China.
    • Anesthesiology. 2015 Mar 1;122(3):686-97.

    BackgroundThe reduction of γ-aminobutyric acid (GABA) type A receptor-mediated inhibition has long been implicated in spinal sensitization of nociceptive responses. However, it is largely unknown which signaling cascades in spinal dorsal horn neurons are initiated by the reduced inhibition to trigger pain hypersensitivity.MethodsGABAergic inhibition was manipulated by intrathecal application of GABA type A receptor antagonist bicuculline in intact mice or by GABA type A receptor agonist muscimol in complete Freund's adjuvant-injected mice. Immunoblotting, coimmunoprecipitation, immunohistochemistry, and behavioral tests were used to explore the signaling pathways downstream of the altered GABAergic tone.ResultsThe study data revealed that the 61-kD isoform of striatal-enriched protein phosphatase (STEP61) was a key molecule that relayed the signals from GABAergic neurotransmission. The authors found that STEP61 was highly expressed in dorsal horn neurons. Under physiological conditions, STEP61 tonically interacted with and negatively controlled the activities of extracellular signal-regulated kinase and Src-family protein tyrosine kinases member Fyn, two critical kinases involved in spinal sensitization. Once GABAergic inhibition was impaired, STEP61 interaction with its substrates was substantially disturbed, allowing for activation of extracellular signal-regulated kinase and Fyn (n = 4 to 6). The hyperactivities of extracellular signal-regulated kinase and Fyn, along with STEP61 dysregulation, caused the tyrosine phosphorylation and synaptic accumulation of GluN2B subunit-containing N-methyl-D-aspartate subtype of glutamate receptors (n = 6), leading to GluN2B receptor-dependent pain hypersensitivity. Overexpression of wild-type STEP61 to resume its enzymatic activity significantly blocked the mechanical allodynia evoked by bicuculline and more importantly, alleviated chronic inflammatory pain (n = 6 in each group).ConclusionThese data identified STEP61 as a key intermediary for GABAergic inhibition to regulate pain sensitization.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.