• Neurosurgery · Mar 1997

    Case Reports

    Cerebral hemodynamic and metabolic changes caused by brain retraction after aneurysmal subarachnoid hemorrhage.

    • K D Yundt, R L Grubb, M N Diringer, and W J Powers.
    • Department of Neurology and Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, USA.
    • Neurosurgery. 1997 Mar 1; 40 (3): 442-50; discussion 450-1.

    ObjectiveThe cerebral hemodynamic and metabolic effects of aneurysmal subarachnoid hemorrhage are complex. To investigate the impact of surgical retraction, we analyzed position emission tomography (PET) studies that measured the regional cerebral metabolic rate for oxygen, regional oxygen extraction fraction, and regional cerebral blood flow in four patients before and after right frontotemporal craniotomies for clipping of ruptured anterior circulation aneurysms.MethodsPreoperative studies were conducted 1 day before surgery and postoperative studies 6 to 17 days after surgery. No patient had hydrocephalus or intracerebral hematoma. At the time of the second PET study, none of the patients had signs of clinical vasospasm. Regional measurements were obtained from the right ventrolateral frontal and anterior temporal regions corresponding to the area of retraction and compared to the same regions in the opposite hemisphere. To establish a quantitative means to differentiate between hemodynamic and metabolic changes related to arterial vasospasm and those caused by brain retraction, we studied a second group of preoperative patients, who had undergone PET during angiographic and clinical vasospasm.ResultsThere was a 45% reduction in regional cerebral metabolic rate for oxygen (1.87 +/- 0.22 to 1.04 +/- 0.28 ml 100 g-1 min-1) and 32% reduction in regional oxygen extraction fraction (0.41 +/- 0.04 to 0.28 +/- 0.03) in the region of retraction but no change in the opposite hemisphere (paired t test; P = 0.042 and 0.003, respectively). There was no change in regional cerebral blood flow in any region. Brain retraction produced a focal area of tissue injury at the site of retractor blade placement, as compared to more diffuse vascular territory changes produced by vasospasm.ConclusionThis reduction in the cerebral metabolic rate of oxygen and the oxygen extraction fraction indicates a primary reduction in metabolism and uncoupling of flow and metabolism (luxury perfusion). Similar findings of luxury perfusion have been reported after ischemic stroke and traumatic brain injury. Further studies will be necessary to fully understand the clinical and pathophysiological significance of these observations.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…