-
- Helen E Gruber, Nomaan Ashraf, Jeremy Kilburn, Cliff Williams, H James Norton, Brian E Gordon, and Edward N Hanley.
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, NC 28232, USA. hgruber@carolinas.org
- Spine. 2005 Dec 1; 30 (23): 2593-600.
Study DesignLower lumbar vertebral endplates from young and old sand rats were assessed in an Institutional Animal Care and Use Committee approved study for architectural endplate features using micro-computerized tomography (CT) 3-dimensional (3D) models and vascularization studies by an in vivo vascular tracer or immunocytochemical identification of blood vessels.ObjectiveTo assess endplate porosity and vascularization using microCT architectural analysis, an in vivo vascular tracer, and immunocytochemical identification of blood vessels in the endplate.Summary Of The Background DataThe vertebral endplates, also called cartilage endplates, form the superior and inferior, or cranial and caudal, boundaries of the disc. In the human being and sand rat, the cartilaginous endplate undergoes calcification with aging and is replaced by bone. Endplate sclerosis has long been thought to play a role in disc degeneration by decreasing nutrient availability to the disc, but this is still poorly understood. Previous work has identified increasing bone mineral density with aging and disc degeneration in the sand rat model.MethodsmicroCT models of the lower lumbar endplates of vertebrae at L5-6 and L6-7 were constructed from 6 younger (mean age 11 months) and 21 older (mean age 25.6 months) sand rats. Architectural features were scored on a semiquantitative scale for smoothness of the endplate face, irregularities on the endplate margin, and endplate thickness. There were 2 smaller sets of animals (n = 18) evaluated for endplate vascularity following in vivo injection of a fluorescent vascular tracer or by the use of immunocytochemistry to identify blood vessels.ResultsmicroCT revealed a solid bony surface to the endplate, which was not penetrated by vasculature; with aging/disc degeneration, there was roughening and pitting of the plate surface, and the development of irregular margins. In L5-6 and L6-7, sites of prominent disc degeneration evident on radiographs, the proportion of abnormalities in surface smoothness, margin irregularity, and endplate thickening were all statistically significant in both younger and older animals (P < or = 0.0027). More severe changes were evident in the caudal versus cranial endplate surfaces. Histologic study of vascular tracer showed that there was no penetration of the disc by vascular supply from the endplate; this was verified by immunocytochemical identification of blood vessels. The canal system within the endplate was a complex 3D interconnected network.ConclusionsFindings show that disc degeneration in the sand rat occurs concomitantly with marked architectural bony changes on the endplate face, including loss of smoothness and development of irregular bony margins. Vascular connections were not present between the endplate and disc; this was verified with microCT studies, in vivo vascular tracers, and traditional immunocytochemistry. The canal system within the imaged endplate was revealed to consist of a complex 3D interconnected network.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.