• Int J Med Robot · Mar 2013

    Preliminary study of a novel method for conveying corrected image volumes in surgical navigation.

    • Amber L Simpson, Prashanth Dumpuri, Janet E Ondrake, Jared A Weis, William R Jarnagin, and Michael I Miga.
    • Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA. amber.l.simpson@vanderbilt.edu
    • Int J Med Robot. 2013 Mar 1; 9 (1): 109-18.

    BackgroundCommercial image-guided surgery systems rely on the fundamental assumption that preoperative medical images represent the physical state of the patient in the operating room. The guidance display typically consists of a three-dimensional (3D) model derived from medical images and three orthogonal views of the imaging data. A challenging question in image-guided surgery is: what happens when the images used in the guidance display no longer correspond to the current geometric state of the anatomy and guidance information is still desirable?MethodsWe modify the conventional display with two techniques for incorporating a displacement field from a finite-element model into the guidance display and present a preliminary study of the effect of our method on performance with a simple surgical task. The topic of this paper is methods for conveying the computational model solution, not the model itself. To address the integration of the computational model solution into the display, a novel method of applying the deformation to the tool tip was developed, which quickly corrects for deformation but also maintains the pristine nature of the preoperative images. We compare the proposed technique to an existing method that applies the deformation field to the image volume.ResultsA pilot study compared mean performance with our method of applying the deformation to the tool tip and the conventional technique. These methods were statistically similar with respect to accuracy of localization (p < 0.05) and amount of time (p < 0.05) required for localization of the target.ConclusionsThese results suggest that our new technique can be used in place of the computationally expensive task of deforming the image volume, without affecting the time or accuracy of the surgical task. Most notably, our work addresses the problem of incorporating deformation correction into the guidance display and offers a first step toward understanding its effect on surgical performance.Copyright © 2012 John Wiley & Sons, Ltd.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…