• Shock · Dec 2007

    Lymphatic-borne IL-1beta and the inducible isoform of nitric oxide synthase trigger the bronchial hyporesponsiveness after intestinal ischema/reperfusion in rats.

    • Fernando Rodrigues Coelho, Gabriela Cavriani, Alexandre Learth Soares, Simone Aparecida Teixeira, Paula Campi Locatelli Almeida, Lia Siguemi Sudo-Hayashi, Marcelo Nicolas Muscará, Ricardo Martins Oliveira-Filho, Bernardo Boris Vargaftig, and Wothan Tavares-de-Lima.
    • Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
    • Shock. 2007 Dec 1; 28 (6): 694-9.

    AbstractIntestinal I/R (i-I/R) is an insult associated to further adult respiratory distress syndrome and multiple organ failure. This study was designed to evaluate the repercussions of i-I/R on bronchial reactivity to the cholinergic agent methacholine. Anesthetized rats were subjected to superior mesenteric artery occlusion (45 min) and killed after clamp release and defined intestinal reperfusion periods (30 min, 2, 4, or 24 h). Intestinal I/R caused a progressive bronchial hyporesponsiveness (BHR) that was maximal upon 2 h but reverted within 24 h of intestinal reperfusion. The BHR observed at 2-h i-I/R was prevented by NOS inhibitors (N-L-nitroarginine methyl ester and aminoguanidine) or the KATP channel blocker glibenclamide. Moreover, 2-h i-I/R increased the pulmonary iNOS mRNA expression, a fact prevented by lymphatic thoracic duct ligation. The methacholine reactivity of 2-h i-I/R bronchial segments incubated with NOS inhibitors or glibenclamide was similar to that of naive tissues. In vivo blockade of IL-1beta receptors or lymphatic duct ligation before 2-h i-I/R both abolished BHR. Incubation of naive bronchial segments with lymph collected from 2-h i-I/R rats determined BHR, an effect fully preventable by ex vivo blockade of IL-1beta receptors. Incubation of naive bronchial segments with IL-1beta, but not with IL-10 or TNF-alpha, significantly induced BHR that was prevented by N-L-nitroarginine methyl ester. Our data suggest that a gut ischemic insult generates IL-1beta that, upon reperfusion, travels through the lymph into the lungs. In this tissue, IL-1beta would stimulate the generation of NO that orchestrates the ensuing BHR for which the opening of KATP channels seems to play a pivotal role.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.