-
Cardiology in the young · Aug 2014
Tissue motion annular displacement of the mitral valve using two-dimensional speckle tracking echocardiography predicts the left ventricular ejection fraction in normal children.
- David E Black, Jen Bryant, Charles Peebles, Keith M Godfrey, Mark Hanson, and Joseph J Vettukattil.
- 1Institute of Developmental Sciences,Human Development and Health Academic Unit,University of Southampton,Southampton,United Kingdom.
- Cardiol Young. 2014 Aug 1; 24 (4): 640-8.
BackgroundThe gold standard for determining the left ventricular ejection fraction is cardiac magnetic resonance imaging. Other parameters for determining the ejection fraction such as M-mode echocardiography are operator-dependant and often inaccurate. Assessment of the displacement of the mitral valve annulus using two-dimensional speckle tracking echocardiography may provide an accurate and simple method of determining the left ventricular ejection fraction in children.MethodWe retrospectively studied 70 healthy 9-year-old children with no history of cardiovascular disease who had been assessed using cardiac magnetic resonance imaging and two-dimensional transthoracic echocardiography. Mitral displacement was determined using the tissue motion annular displacement (TMAD) feature of Philips QLAB version 9. The midpoint displacement of the mitral valve was calculated, and the predicted left ventricular ejection fraction was compared with magnetic resonance imaging-derived and M-mode-derived ejection fractions.ResultsThe mean ejection fraction derived from magnetic resonance imaging (64.5 (4.6)) was similar to that derived from the TMAD midpoint (60.9 (2.7), p = 0.001) and the M-mode (61.9 (7), p = 0.012). The TMAD midpoint correlated strongly with the magnetic resonance imaging-derived ejection fraction (r = 0.69, p < 0.001), as did the predicted fraction (r = 0.67, p < 0.001). The M-mode ejection fraction showed a poor linear correlation with both magnetic resonance imaging-derived and TMAD-derived fractions (r = 0.33 and 0.04, respectively).ConclusionTMAD of the mitral valve is a simple, effective, and highly reproducible method of assessing the ejection fraction in normal children. It shows a strong linear correlation with magnetic resonance imaging-derived ejection fraction and is superior to M-mode-derived ejection fractions.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.