• Surgical endoscopy · Aug 2003

    Comparative Study

    Comparison of ultrasonic energy, bipolar thermal energy, and vascular clips for the hemostasis of small-, medium-, and large-sized arteries.

    • K L Harold, H Pollinger, B D Matthews, K W Kercher, R F Sing, and B T Heniford.
    • Department of Surgery, Carolinas Medical Center, 1000 Blythe Boulevard, MEB 601, Charlotte, NC 28203, USA.
    • Surg Endosc. 2003 Aug 1; 17 (8): 1228-30.

    BackgroundAdvanced laparoscopic procedures have necessitated the development of new technology for vascular control. Suture ligation can be time-consuming and cumbersome during laparoscopic dissection. Titanium clips have been used for hemostasis, and recently plastic clips and energy sources such as ultrasonic coagulating shears and bipolar thermal energy devices have become popular. The purpose of this study was to compare the bursting pressure of arteries sealed with ultrasonic coagulating shears (UCS), electrothermal bipolar vessel sealer (EBVS), titanium laparoscopic clips (LCs), and plastic laparoscopic clips (PCs). In addition, the spread of thermal injury from the UCS and the EBVS was compared.MethodsArteries in three size groups (2-3, 4-5 and 6-7 mm) were harvested from freshly euthanized pigs. Each of the four devices was used to seal 16 specimens from each size group for burst testing. A 5-Fr catheter was placed into the open end of the specimen and secured with a purse-string suture. The catheter was connected to a pressure monitor and saline was infused until there was leakage from the sealed end. This defined the bursting pressure in mmHg. The ultrasonic shears and bipolar thermal device were used to seal an additional 8 vessels in each size group, which were sent for histologic examination. These were examined with hematoxylin and eosin stains, and the extent of thermal injury, defined by coagulation necrosis, was measured in millimeters. Analysis of variance was performed and, where appropriate, a Tukey's test was also performed.ResultsThe EBVS's mean burst pressure was statistically higher than that of the UCS at 4 or 5 mm (601 vs 205 mmHg) and 6 or 7 mm (442 vs 175 mmHg). EBVS had higher burst pressures for the 4 or 5-mm group (601 mmHg) and 6 or 7-mm group (442 mmHg) compared with its pressure at 2 or 3 mm (128 mmHg) ( p = 0.0001). The burst pressures of the UCS and EBVS at 2 or 3 mm were not significantly different. Both clips were statistically stronger than the thermal devices except at 4 or 5 mm, in which case the EBVS was as strong as the LC (601 vs 593 mmHg). The PC and LC were similar except at 4 or 5 mm, where the PC was superior (854 vs 593 mmHg). The PC burst pressure for 4 or 5 mm (854 mmHg) was statistically higher than that for vessels 2 or 3 mm (737 mmHg) but not different from the 6 or 7 mm pressure (767 mmHg). Thermal spread was not statistically different when comparing EBVS and UCS at any size (EBVS mean = 2.57 mm vs UCS mean = 2.18 mm).ConclusionsBoth the PC and LC secured all vessel sizes to well above physiologic levels. The EBVS can be used confidently in vessels up to 7 mm. There is no difference in the thermal spread of the LigaSure vessel sealer and the UCS.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.