• Bmc Health Serv Res · Jan 2014

    Comparative Study

    Estimating recruitment rates for routine use of patient reported outcome measures and the impact on provider comparisons.

    • Andrew Hutchings, Jenny Neuburger, Jan van der Meulen, and Nick Black.
    • Department of Health Services Research & Policy, London School of Hygiene & Tropical Medicine, 15-17 Tavistock Place, London WC1H 9SH, UK. Nick.black@lshtm.ac.uk.
    • Bmc Health Serv Res. 2014 Jan 1; 14: 66.

    BackgroundThe routine use of patient reported outcome measures (PROMs) aims to compare providers as regards the clinical need of their patients and their outcome. Simple methods of estimating recruitment rates based on aggregated data may be inaccurate. Our objectives were to: use patient-level linked data to evaluate these estimates; produce revised estimates of national and providers' recruitment rates; and explore whether or not recruitment bias exists.MethodsCase study based on patients who were eligible to participate in the English National PROMs Programme for elective surgery (hip and knee replacement, groin hernia repair, varicose vein surgery) using data from pre-operative questionnaires and Hospital Episode Statistics. Data were linked to determine: the eligibility for including operations; eligibility of date of surgery; duplicate questionnaires; cancelled operations; correct assignment to provider. Influence of patient characteristics on recruitment rates were investigated.ResultsNational recruitment rates based on aggregated data over-estimated the true rate because of the inclusion of ineligible operations (from 1.9% - 7.0% depending on operation) and operations being cancelled (1.9% - 3.6%). Estimates of national recruitment rates using inclusion criteria based on patient-level linked data were lower than those based on simple methods (eg hip replacement was 73% rather than 78%).Estimates of provider's recruitment rates based on aggregated data were also adversely affected by attributing patients to the wrong provider (2.4% - 4.9%). Use of linked data eliminated all estimates of over 100% recruitment, though providers still showed a wide range of rates.While the principal determinant of recruitment rates was the provider, some patients' socio-demographic characteristics had an influence on non-recruitment: non-white (Adjusted Odds Ratio 1.25-1.67, depending on operation); most deprived socio-economic group (OR 1.11-1.23); aged over 75 years (OR 1.28-1.79). However, there was no statistically significant association between providers' recruitment rates and patients' pre-operative clinical need.ConclusionsAccurate recruitment rates require the use of linked data to establish consistent inclusion criteria for numerators and denominators. Non-recruitment will bias comparisons of providers' pre-operative case-mix and may bias comparisons of outcomes if unmeasured confounders are not evenly distributed between providers. It is important, therefore, to strive for high recruitment rates.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…