• Anti-cancer drugs · Jun 2009

    Randomized Controlled Trial

    Administration of reduced glutathione in FOLFOX4 adjuvant treatment for colorectal cancer: effect on oxaliplatin pharmacokinetics, Pt-DNA adduct formation, and neurotoxicity.

    • Paola Milla, Mario Airoldi, Günther Weber, Anne Drescher, Ulrich Jaehde, and Luigi Cattel.
    • Departments of Drug Science and Technology, Turin University, Turin, Italy.
    • Anticancer Drugs. 2009 Jun 1; 20 (5): 396-402.

    AbstractOxaliplatin is a promising drug for cancer therapy and the oxaliplatin/5-fluorouracil/leucovorin (FOLFOX) regimen has become the standard adjuvant treatment for colorectal cancer. However, the oxaliplatin-induced neurotoxicity still represents a clinical problem leading to a discontinuation of the therapy. Many strategies have been proposed in order to manage the neurotoxicity, but their effect on antitumoral efficacy is still unclear. In this study, we investigated the effect of reduced glutathione administration on neurotoxicity, oxaliplatin pharmacokinetics, and platinum-DNA (Pt-DNA) adduct formation in patients affected by colorectal cancer treated with FOLFOX4 adjuvant regimen. Twenty-seven patients were randomized to receive GSH 1500 mg/m or saline solution before oxaliplatin infusion. Evaluation of neurotoxicity, pharmacokinetics of plasmatic total and ultrafiltered Pt, and determination of Pt-DNA adduct formation on white blood cells was performed during the 5th, 9th, and 12th cycles. At the end of all cycles of therapy, the patients in the GSH arm showed a statistically significant reduction of neurotoxicity (P=0.0037) compared with the placebo arm. There were no significant differences in the main pharmacokinetic parameters between the two arms except a lower area under the plasma concentration-time curve and a smaller apparent steady-state volume of distribution (Vss) when GSH was coadministered. This difference can be explained by the natural function of GSH in the detoxification of oxaliplatin and by its ability to remove the Pt bound to plasma proteins. The determination of Pt-DNA adduct formation shows no statistically significant differences between the two arms. In conclusion, this study indicates that coadministration of GSH is an effective strategy to reduce the oxaliplatin-induced neurotoxicity without impairing neither the pharmacokinetics of oxaliplatin, nor the Pt-DNA adduct formation.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…