• Annals of intensive care · Jan 2011

    Microcirculatory alterations: potential mechanisms and implications for therapy.

    • Daniel De Backer, Katia Donadello, Fabio Silvio Taccone, Gustavo Ospina-Tascon, Diamantino Salgado, and Jean-Louis Vincent.
    • Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Route de Lennik 808, B-1070 Brussels, Belgium. ddebacke@ulb.ac.be.
    • Ann Intensive Care. 2011 Jan 1; 1 (1): 27.

    AbstractMultiple experimental and human trials have shown that microcirculatory alterations are frequent in sepsis. In this review, we discuss the characteristics of these alterations, the various mechanisms potentially involved, and the implications for therapy. Sepsis-induced microvascular alterations are characterized by a decrease in capillary density with an increased number of stopped-flow and intermittent-flow capillaries, in close vicinity to well-perfused capillaries. Accordingly, the surface available for exchange is decreased but also is highly heterogeneous. Multiple mechanisms may contribute to these alterations, including endothelial dysfunction, impaired inter-cell communication, altered glycocalyx, adhesion and rolling of white blood cells and platelets, and altered red blood cell deformability. Given the heterogeneous nature of these alterations and the mechanisms potentially involved, classical hemodynamic interventions, such as fluids, red blood cell transfusions, vasopressors, and inotropic agents, have only a limited impact, and the microcirculatory changes often persist after resuscitation. Nevertheless, fluids seem to improve the microcirculation in the early phase of sepsis and dobutamine also can improve the microcirculation, although the magnitude of this effect varies considerably among patients. Finally, maintaining a sufficient perfusion pressure seems to positively influence the microcirculation; however, which mean arterial pressure levels should be targeted remains controversial. Some trials using vasodilating agents, especially nitroglycerin, showed promising initial results but they were challenged in other trials, so it is difficult to recommend the use of these agents in current practice. Other agents can markedly improve the microcirculation, including activated protein C and antithrombin, vitamin C, or steroids. In conclusion, microcirculatory alterations may play an important role in the development of sepsis-related organ dysfunction. At this stage, therapies to target microcirculation specifically are still being investigated.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…