• Exp. Cell Res. · Nov 2015

    Activators and stimulators of soluble guanylate cyclase counteract myofibroblast differentiation of prostatic and dermal stromal cells.

    • Christoph Zenzmaier, Johann Kern, Martin Heitz, Eugen Plas, Werner Zwerschke, Monika Mattesich, Peter Sandner, and Peter Berger.
    • University of Applied Sciences Tyrol, Innsbruck, Austria. Electronic address: christoph.zenzmaier@fhg-tirol.ac.at.
    • Exp. Cell Res. 2015 Nov 1; 338 (2): 162-9.

    BackgroundFibrotic diseases encompass numerous systemic and organ-specific disorders characterized by the development and persistence of myofibroblasts. TGFβ1 is considered the key inducer of fibrosis and drives myofibroblast differentiation in cells of diverse histological origin by a pro-oxidant shift in redox homeostasis associated with decreased nitric oxide (NO)/cGMP signaling. Thus, enhancement of NO/cGMP represents a potential therapeutic strategy to target myofibroblast activation and therefore fibrosis.MethodsMyofibroblast differentiation was induced by TGFβ1 in human primary prostatic (PrSCs) and normal dermal stromal cells (NDSCs) and monitored by α smooth muscle cell actin (SMA) and IGF binding protein 3 (IGFBP3) mRNA and protein levels. The potential of enhanced cGMP production by the sGC stimulator BAY 41-2272 or the sGC activator BAY 60-2770 to inhibit and revert myofibroblast differentiation in vitro was analyzed. Moreover, potential synergisms of BAY 41-2272 or BAY 60-2770 and inhibition of cGMP degradation by the PDE5 inhibitor vardenafil were investigated.ResultsBAY 41-2272 and BAY 60-2770 at doses of 30µM significantly inhibited induction of SMA and IGFBP3 levels in PrSCs and reduced myofibroblast marker levels in TGFβ1-predifferentiated cells. At lower concentrations (3 and 10µM) only BAY 41-2272 but not BAY 60-2770 significantly inhibited and reverted myofibroblast differentiation. In NDSCs both substances significantly inhibited differentiation at all concentrations tested. Attenuation of SMA expression was more pronounced in NDSCs whereas reduction of IGFBP3 levels by BAY 41-2272 appeared more efficient in PrSCs. Moreover, administration of BAY 41-2272 or BAY 60-2770 enhanced the efficiency of the PDE5 inhibitor vardenafil to inhibit and revert myofibroblast differentiation in vitro.ConclusionsIncrease of cGMP by sGC stimulation/activation significantly inhibited and reverted myofibroblast differentiation. This effect was even more pronounced when a combination treatment with a PDE5 inhibitor was applied. Thus, enhancement of NO/cGMP-signaling by sGC stimulation/activation is a promising strategy for the treatment of fibrotic diseases. Whereas, in NDSCs BAY 60-2770 and BAY 41-2272 exerted similar effects on myofibroblast differentiation, higher potency of BAY 41-2272 was observed in PrSCs, indicating phenotypical differences between fibroblasts form different organs that should be taken into account in the search for antifibrotic therapies.Copyright © 2015 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…