• Haemophilia · Jul 2006

    Review

    Genetic diagnosis of haemophilia and other inherited bleeding disorders.

    • F Peyvandi, G Jayandharan, M Chandy, A Srivastava, S M Nakaya, M J Johnson, A R Thompson, A Goodeve, I Garagiola, S Lavoretano, M Menegatti, R Palla, M Spreafico, L Tagliabue, R Asselta, S Duga, and P M Mannucci.
    • Department of Medicine and Medical Specialities, IRCCS Maggiore Hospital, Mangiagalli and Regina Elena Foundation, Luigi Villa Foundation, University of Milan, Milan, Italy. flora.peyvandi@unimi.it
    • Haemophilia. 2006 Jul 1; 12 Suppl 3: 82-9.

    AbstractInherited deficiencies of plasma proteins involved in blood coagulation generally lead to lifelong bleeding disorders, whose severity is inversely proportional to the degree of factor deficiency. Haemophilia A and B, inherited as X-linked recessive traits, are the most common hereditary hemorrhagic disorders caused by a deficiency or dysfunction of blood coagulation factor VIII (FVIII) and factor IX (FIX). Together with von Willebrand's disease, a defect of primary haemostasis, these X-linked disorders include 95% to 97% of all the inherited deficiencies of coagulation factors. The remaining defects, generally transmitted as autosomal recessive traits, are rare with prevalence of the presumably homozygous forms in the general population of 1:500,000 for FVII deficiency and 1 in 2 million for prothrombin (FII) and factor XIII (FXIII) deficiency. Molecular characterization, carrier detection and prenatal diagnosis remain the key steps for the prevention of the birth of children affected by coagulation disorders in developing countries, where patients with these deficiencies rarely live beyond childhood and where management is still largely inadequate. These characterizations are possible by direct or indirect genetic analysis of genes involved in these diseases, and the choice of the strategy depends on the effective available budget and facilities to achieve a large benefit. In countries with more advanced molecular facilities and higher budget resources, the most appropriate choice in general is a direct strategy for mutation detection. However, in countries with limited facilities and low budget resources, carrier detection and prenatal diagnosis are usually performed by linkage analysis with genetic markers. This article reviews the genetic diagnosis of haemophilia, genetics and inhibitor development, genetics of von Willebrand's disease and of rare bleeding disorders.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.