-
Journal of neurotrauma · Aug 2015
Clinical TrialEffect of Mild Cold Exposure on Cognition in Persons with Tetraplegia.
- John P Handrakis, Shou-An Liu, Dwindally Rosado-Rivera, Megan Krajewski, Ann M Spungen, Charlene Bang, Kirsten Swonger, and William A Bauman.
- 1 Department of Veterans Affairs Rehabilitation Research and Development Service, National Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center , Bronx, New York.
- J. Neurotrauma. 2015 Aug 1;32(15):1168-75.
UnlabelledPersons with a cervical spinal cord injury (SCI) have impaired thermoregulatory mechanisms secondary to interrupted of motor, sensory, and sympathetic pathways. In this study, our primary aim was to determine the effect of cool temperature exposure on core body temperature (Tcore) and cognitive performance in persons with tetraplegia. Seven men with chronic tetraplegia (C3-C7, American Spinal Injury Association Impairment Scale [AIS] A-C) and seven able-bodied controls were exposed to 27°C temperature at baseline (BL) before being exposed to 18°C for ≤120 min (Cool Challenge). Rectal temperature (Tcore), distal skin temperatures (Tskavg), microvascular skin perfusion (LDFavg), and systolic blood pressure (SBP) were measured. Cognitive performance was assessed using Delayed Recall, Stroop Interference tests at the end of BL and Cool Challenge. After Cool Challenge, Tcore decreased -1.2±0.12°C (p<0.0001) in tetraplegics after an average of 109±15.9 min with no change in controls after 120 min. Tskavg declined in both groups, but decline was less in tetraplegics than in controls (-8.6±5.8% vs. -31.6±7.9%, respectively; p<0.0001). LDFavg declined only in controls (-72±17.9%; p<0.001). Plasma norepinephrine levels differed after Cool Challenge (tetraplegics vs.Controls86±62 pg/mL vs. 832±431 pg/mL, respectively; p<0.01). SBP increased from BL to Cool Challenge only in controls (123±16 mm Hg to 149±17 mm Hg, respectively; p<0.01). Delayed Recall and Stroop Interference scores both declined in tetraplegics (-55±47.4%; p<0.05 and -3.9±3.8%; p<0.05, respectively), but not in controls. We conclude that persons with tetraplegia lack adequate thermoregulatory mechanisms to prevent downward drift in Tcore on exposure to cool temperatures. This decline in Tcore was associated with deterioration of working memory and executive function.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.