• Journal of neurotrauma · May 2003

    Increased hippocampal CA3 vulnerability to low-level kainic acid following lateral fluid percussion injury.

    • Elisa Roncati Zanier, Stefan M Lee, Paul M Vespa, Christopher C Giza, and David A Hovda.
    • Brain Injury Research Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.
    • J. Neurotrauma. 2003 May 1; 20 (5): 409-20.

    AbstractThis study was designed to determine whether a secondary increase in neuronal activity induced by a low dose of kainic acid (KA), a glutamate analogue, exacerbates the anatomical damage in hippocampal regions following a mild lateral fluid percussion (LFP) brain injury. KA (9 mg/kg) was injected intraperitoneally in LFP-injured rats (n = 16) 1 h post-trauma. The neuronal loss in the CA3, CA4, and hilar regions at 7 days was quantified by two-dimensional cell counts. Hippocampal activation 15 min following KA injection was assessed by measuring local glucose metabolic rates (lCMR(glc)). Following LFP + KA, the ipsilateral side exhibited a 62.7%, 75.7%, and 52.1% decrease in the number of CA3, CA4 and hilar neurons, respectively, compared to naive rats (n = 3). These CA3 and CA4 neuronal counts were also significantly decreased compared to LFP + saline (n = 5) and sham + KA (n = 9) groups. The median Racine Score, used to rate the severity of behavioral seizures, was 4 in LFP + KA and 2 in sham + KA groups (p < 0.015), suggesting a reduction in seizure threshold following injury. lCMRglc in CA3 following LFP + KA was 121.8 +/- 2.0 (mean +/- SE) ipsilaterally and 71.5 +/- 5.4 contralaterally (p < 0.0012). No changes were found in the BBB permeability as measured by [(14)C]aminoisobutyric acid in CA3, CA4, and hilar regions. We conclude that the presence of low-level KA 1 h after LFP dramatically increases the extent of hippocampal activation and induces a striking loss of ipsilateral CA3 and CA4 pyramidal neurons. Neuronal excitation during a time of cellular vulnerability may trigger or amplify the cycle of secondary damage in functionally impaired, but potentially viable, tissue.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.