• Eur J Anaesthesiol · Sep 2016

    Review

    Inhaled anaesthetics and nitrous oxide: Complexities overlooked: things may not be what they seem.

    • Jan Hendrickx, Philip Peyton, Rik Carette, and Andre De Wolf.
    • From the Department of Anesthesiology, Intensive Care and Pain Therapy, OLV Hospital, Aalst, Belgium (JH); Department of Anaesthesiology, Austin Hospital and University of Melbourne, Melbourne, Australia (PP); Department of Anesthesiology, Intensive Care and Pain Therapy, OLV Hospital, Aalst, Belgium (RC); and Department of Anesthesiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA (ADW) *Jan Hendrickx, Philip Peyton and Andre De Wolf are members of the NAVAt group.
    • Eur J Anaesthesiol. 2016 Sep 1; 33 (9): 611-9.

    AbstractThis review re-examines existing pharmacokinetic and pharmacodynamic concepts of inhaled anaesthetics. After showing where uptake is hidden in the classic FA/FI curve, it is argued that target-controlled delivery of inhaled agents warrants a different interpretation of the factors affecting this curve (cardiac output, ventilation and blood/gas partition coefficient). Blood/gas partition coefficients of modern agents may be less important clinically than generally assumed. The partial pressure cascade from delivered to inspired to end-expired is re-examined to better understand the effect of rebreathing during low-flow anaesthesia, including the possibility of developing a hypoxic inspired mixture despite existing machine standards. Inhaled agents are easy to administer because they are transferred according to partial pressure gradients. In addition, the narrow dose-response curves for the three end points of general anaesthesia (loss of response to verbal command, immobility and autonomic reflex control) allow the clinical use of MACawake, MAC and MACBAR to determine depth of anaesthesia. Opioids differentially affect these clinical effects of inhaled agents. The effect of ventilation-perfusion relationships on gas uptake is discussed, and it is shown how moving beyond Riley's useful but simplistic model allows us to better understand both the concept and the magnitude of the second gas effect of nitrous oxide. It is argued that nitrous oxide remains a clinically useful drug. We hope to bring old (but ignored) and new (but potentially overlooked) information into the educational and clinical arenas to stimulate discussion among clinicians and researchers. We should not let technology pass by our all too engrained older concepts.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.