• Med Phys · Sep 2012

    Characterization of adaptive statistical iterative reconstruction algorithm for dose reduction in CT: A pediatric oncology perspective.

    • S L Brady, B S Yee, and R A Kaufman.
    • Department of Radiological Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA. samuel.brady@stjude.org
    • Med Phys. 2012 Sep 1; 39 (9): 5520-31.

    PurposeThis study demonstrates a means of implementing an adaptive statistical iterative reconstruction (ASiR™) technique for dose reduction in computed tomography (CT) while maintaining similar noise levels in the reconstructed image. The effects of image quality and noise texture were assessed at all implementation levels of ASiR™. Empirically derived dose reduction limits were established for ASiR™ for imaging of the trunk for a pediatric oncology population ranging from 1 yr old through adolescence∕adulthood.MethodsImage quality was assessed using metrics established by the American College of Radiology (ACR) CT accreditation program. Each image quality metric was tested using the ACR CT phantom with 0%-100% ASiR™ blended with filtered back projection (FBP) reconstructed images. Additionally, the noise power spectrum (NPS) was calculated for three common reconstruction filters of the trunk. The empirically derived limitations on ASiR™ implementation for dose reduction were assessed using (1, 5, 10) yr old and adolescent∕adult anthropomorphic phantoms. To assess dose reduction limits, the phantoms were scanned in increments of increased noise index (decrementing mA using automatic tube current modulation) balanced with ASiR™ reconstruction to maintain noise equivalence of the 0% ASiR™ image.ResultsThe ASiR™ algorithm did not produce any unfavorable effects on image quality as assessed by ACR criteria. Conversely, low-contrast resolution was found to improve due to the reduction of noise in the reconstructed images. NPS calculations demonstrated that images with lower frequency noise had lower noise variance and coarser graininess at progressively higher percentages of ASiR™ reconstruction; and in spite of the similar magnitudes of noise, the image reconstructed with 50% or more ASiR™ presented a more smoothed appearance than the pre-ASiR™ 100% FBP image. Finally, relative to non-ASiR™ images with 100% of standard dose across the pediatric phantom age spectrum, similar noise levels were obtained in the images at a dose reduction of 48% with 40% ASIR™ and a dose reduction of 82% with 100% ASIR™.ConclusionsThe authors' work was conducted to identify the dose reduction limits of ASiR™ for a pediatric oncology population using automatic tube current modulation. Improvements in noise levels from ASiR™ reconstruction were adapted to provide lower radiation exposure (i.e., lower mA) instead of improved image quality. We have demonstrated for the image quality standards required at our institution, a maximum dose reduction of 82% can be achieved using 100% ASiR™; however, to negate changes in the appearance of reconstructed images using ASiR™ with a medium to low frequency noise preserving reconstruction filter (i.e., standard), 40% ASiR™ was implemented in our clinic for 42%-48% dose reduction at all pediatric ages without a visually perceptible change in image quality or image noise.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…