• Anesthesia and analgesia · Jul 2016

    Comparative Study

    The Feasibility and Utility of Continuous Sleep Monitoring in Critically Ill Patients Using a Portable Electroencephalography Monitor.

    • Susana Vacas, Erin McInrue, Michael A Gropper, Mervyn Maze, Rochelle Zak, Eunjung Lim, and Jacqueline M Leung.
    • From the Departments of *Anesthesia and Perioperative Care and †Medicine, University of California San Francisco, San Francisco, California; and ‡Office of Biostatistics & Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, Honolulu, Hawaii.
    • Anesth. Analg. 2016 Jul 1; 123 (1): 206-12.

    BackgroundSleep disruption in critically ill adults can result in acute decrements in cognitive function, including delirium, but it is underdiagnosed in the setting of the intensive care unit (ICU). Although sleep stages can be assessed by polysomnography (PSG), acquisition and interpretation of PSG is costly, is labor intensive, is difficult to do over an extended period of time with critically ill patients (multiple days of continuous recording), and may interfere with patient care. In this pilot study, we investigated the feasibility and utility of monitoring sleep in the ICU setting using a portable electroencephalography (EEG) monitor, the SedLine brain monitor.MethodsWe first performed a baseline comparison study of the SedLine brain monitor by comparing its recordings to PSG recorded in a sleep laboratory (n = 3). In a separate patient cohort, we enrolled patients in the ICU who were monitored continuously with the SedLine monitor for sleep disruption (n = 23). In all enrolled patients, we continuously monitored their EEG. The raw EEG was retrieved and sleep stages and arousals were analyzed by a board-certified technologist. Delirium was measured by a trained research nurse using the Confusion Assessment Method developed for the ICU.ResultsFor all enrolled patients, we continuously monitored their EEGs and were able to retrieve the raw EEGs for analysis of sleep stages. Overall, the SedLine brain monitor was able to differentiate sleep stages, as well as capture arousals and transitions between sleep stages compared with the PSG performed in the sleep laboratory. The percentage agreement was 67% for the wake stage, 77% for the non-rapid eye movement (REM) stage (N1 = 29%, N2 = 88%, and N3 = 6%), and 89% for the REM stage. The overall agreement was measured with the use of weighted kappa, which was 0.61, 95% confidence interval, 0.58 to 0.64. In the ICU study, the mean recording time for the 23 enrolled patients was 19.10 hours. There were several signs indicative of poor-quality sleep, where sleep was distributed throughout the day, with reduced time spent in REM (1.38% ± 2.74% of total sleep time), and stage N3 (2.17% ± 5.53% of total sleep time) coupled with a high arousal index (34.63 ± 19.04 arousals per hour). The occurrence of ICU delirium was not significantly different between patients with and without sleep disruption.ConclusionsOur results suggest the utility of a portable EEG monitor to measure different sleep stages, transitions, and arousals; however, the accuracy in measuring different sleep stages by the SedLine monitor varies compared with PSG. Our results also support previous findings that sleep is fragmented in critically ill patients. Further research is necessary to develop portable EEG monitors that have higher agreement with PSG.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.