• Journal of neurotrauma · Jan 2017

    The Effect of Underwater Blast on Aggregating Brain Cell Cultures.

    • Thomas W Sawyer, Julian J Lee, Mercy Villanueva, Yushan Wang, Peggy Nelson, Yanfeng Song, Chengyang Fan, Julia Barnes, and Lori McLaws.
    • 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada .
    • J. Neurotrauma. 2017 Jan 15; 34 (2): 517-528.

    AbstractAlthough the deleterious effects of primary blast on gas-filled organs are well accepted, the effect of blast-induced shock waves on the brain is less clear because of factors that complicate the interpretation of clinical and experimental data. Brain cell aggregate cultures are comprised of multiple differentiated brain cell types and were used to examine the effects of underwater blast. Suspensions of these cultures encased in dialysis tubing were exposed to explosive-generated underwater blasts of low (∼300 kPa), medium (∼2,700 kPa), or high (∼14,000 kPa) intensities and harvested at 1-28 days post-exposure. No changes in gross morphology were noted immediately or weeks after blast wave exposure, and no increases in either apoptotic (caspase-3) or necrotic (lactate dehydrogenase) cell death were observed. Changes in neuronal (neurofilament H, acetylcholinesterase, and choline acetyltransferase) and glial (glial fibrillary acidic protein, glutamine synthetase) endpoints did not occur. However, significant time- and pressure-related increases in Akt (protein kinase B) phosphorylation were noted, as well as declines in vascular endothelial growth factor levels, implicating pathways involved in cellular survival mechanisms. The free-floating nature of the aggregates during blast wave exposure, coupled with their highly hydrolyzed dialysis tubing containment, results in minimized boundary effects, thus enabling accurate assessment of brain cell response to a simplified shock-induced stress wave. This work shows that, at its simplest, blast-induced shock waves produce subtle changes in brain tissue. This study has mechanistic implications for the study of primary blast-induced traumatic brain injury and supports the thesis that underwater blast may cause subtle changes in the brains of submerged individuals.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.