• Pacing Clin Electrophysiol · Apr 1996

    Comparative Study

    A critical period of ventricular fibrillation more susceptible to defibrillation: real-time waveform analysis using a single ECG lead.

    • P W Hsia, S Frerk, C A Allen, R M Wise, N M Cohen, and R J Damiano.
    • Department of Biomedical Engineering, Medical College of Virginia, Virginia Commonwealth University, Richmond, USA.
    • Pacing Clin Electrophysiol. 1996 Apr 1; 19 (4 Pt 1): 418-30.

    AbstractPrevious studies have suggested that variations in the underlying ventricular fibrillation (VF) waveform may be one of the factors responsible for the probabilistic nature of defibrillation. The heart appeared to be more susceptible to defibrillation at higher absolute VF voltages (AVFV). This study investigated in an open-chest canine model (n = 8), a newly developed system that analyzed the VF waveform in real-time, instantaneously determined the time to shock, and immediately delivered a fixed low energy DC shock. A two parameter tracking technique using a running long-term and short-term AVFV average was devised to automatically identify a high voltage peak area of the VF waveform, which has been hypothesized to represent a critical period susceptible to defibrillation. Using a DC shock estimated at the 50% success level, the performance using this technique in 58 defibrillation trials was compared to the performance of the conventional method of shocking at a fixed time (random shock method) in 62 trials. Patch size, electrode location, and discharge voltage were kept constant while VF duration, transmyocardial resistance (TMR), energy delivered, and AVFV at the point of shock were measured. Shock energy and current, TMR, and VF duration were similar with both shock methods. A significantly higher AVFV was observed for trials performed with the peak shock method (0.66 +/- 0.02 mV) as compared to trials performed with the random shock method (0.25 +/- 0.09 mV) (P < 0.003). Using lead II as the only sensing lead, the success rate was increased in 6 of 8 dogs (75%) with the new method. One animal showed identical performance, and one animal a worse performance. The overall increase in success rate was 24% using a single ECG lead (range 0%-100%; P < 0.04). Our data document that using this algorithm a period of high VF voltage can be detected in real-time. The improved success in the majority of animals supports the hypothesis that a critical period susceptible to defibrillation exists during VF. However, the high AVFV detected using a single ECG lead did not translate to an improved success rate in all animals. This suggests that other factors in addition to the VF voltage measured on a single lead of the ECG are important in characterizing this critical period.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.