• Clinical therapeutics · Jan 2005

    Review

    Capecitabine: a review.

    • Christine M Walko and Celeste Lindley.
    • Department of Pharmacotherapy and Experimental Therapeutics, University of North Carolina School of Pharmacy, Chapel Hill, North Carolina 27599-7360, USA. christine_walko@unc.edu
    • Clin Ther. 2005 Jan 1; 27 (1): 23-44.

    BackgroundFluorouracil (FU) is an antimetabolite with activity against numerous types of neoplasms, including those of the breast, esophagus, larynx, and gastrointestinal and genitourinary tracts. Systemic toxicity, including neutropenia, stomatitis, and diarrhea, often occur due to cytotoxic nonselectivity. Capecitabine was developed as a prodrug of FU, with the goal of improving tolerability and intratumor drug concentrations through tumor-specific conversion to the active drug.ObjectivesThe purpose of this article is to review the available information on capecitabine with respect to clinical pharmacology, mechanism of action, pharmacokinetic and pharmacodynamic properties, clinical efficacy for breast and colorectal cancer adverse-effect profile, documented drug interactions, dosage and administration, and future directions of ongoing research.MethodsRelevant English-language literature was identified through searches of PubMed (1966 to August 2004), International Pharmaceutical Abstracts (1977 to August 2004), and the Proceedings of the American Society of Clinical Oncology (January 1995 to August 2004). Search terms included capecitabine, Xeloda, breast cancer, and colorectal cancer. The references of the identified articles were reviewed for additional sources. In addition, product information was obtained from Roche Pharmaceuticals. Studies from the identified literature that addressed this article's objectives were selected for review, with preference given to Phase II/III trials.ResultsCapecitabine is an oral prodrug that is converted to its only active metabolite, FU, by thymidine phosphorylase. Higher levels of this enzyme are found in several tumors and the liver, compared with normal healthy tissue. In adults, capecitabine has a bioavailability of approximately 100% with a Cmax of 3.9 mg/L, Tmax of 1.5 to 2 hr, and AUC of 5.96 mg.h/L. The predominant route of elimination is renal, and dosage reduction of 75% is recommended in patients with creatinine clearance (CrCl) of 30 to 50 mL/min. The drug is contraindicated if CrCl is < 30 mL/min. Capecitabine has shown varying degrees of efficacy with acceptable tolerability in numerous cancers including prostate, renal cell, ovarian, and pancreatic, with the largest amount of evidence in metastatic breast and colorectal cancer. Single-agent capecitabine was compared with IV FU/leucovorin (LV) using the bolus Mayo Clinic regimen in 2 Phase III trials as first-line treatment for patients with metastatic colorectal cancer. Overall response rate (RR) favored the capecitabine arm (26% vs 17%, P < 0.001); however, this did not translate into a difference in time to progression (TTP) (4.6 months vs 4.7 months) or overall survival (OS) (12.9 months vs 12.8 months). In Phase II noncomparative trials, combinations of capecitabine with oxaliplatin or irinotecan have produced results similar to regimens combining FU/LV with the same agents in patients with colorectal cancer. In metastatic breast cancer patients who had received prior treatment with an anthracycline-based regimen, a Phase III trial comparing the combination of capecitabine with docetaxel versus docetaxel alone demonstrated superior objective tumor RR (42% vs 30%, P = 0.006), median TTP (6.1 months vs 4.2 months, P < 0.001), and median OS (14.5 months vs 11.5 months, P = 0.013) with the combination treatment. Noncomparative Phase II studies have also supported efficacy in patients with metastatic breast cancer pretreated with both anthracyclines and taxanes, yielding an overall RR of 15% to 29% and median OS of 9.4 to 15.2 months. The most common dose-limiting adverse effects associated with capecitabine monotherapy are hyperbilirubinemia, diarrhea, and hand-foot syndrome. Myelosuppression, fatigue and weakness, abdominal pain, and nausea have also been reported. Compared with bolus FU/LV, capecitabine was associated with more hand-foot syndrome but less stomatitis, alopecia, neutropenia requiring medical management, diarrhea, and nausea. Capecitabine has been reported to increase serum phenytoin levels and the international normalized ratio in patients receiving concomitant phenytoin and warfarin, respectively. The dose of capecitabine approved by the US Food and Drug Administration (FDA) for both metastatic colorectal and breast cancer is 1250 Mg/M2 given orally twice per day, usually separated by 12 hours for the first 2 weeks of every 3-week cycle.ConclusionsCapecitabine is currently approved by the FDA for use as first-line therapy in patients with metastatic colorectal cancer when single-agent fluoropyrimidine therapy is preferred. The drug is also approved for use as (1) a single agent in metastatic breast cancer patients who are resistant to both anthracycline- and paclitaxel-based regimens or in whom further anthracycline treatment is contra indicated and (2) in combination with docetaxel after failure of prior anthracycline-based chemotherapy. Single-agent and combination regimens have also shown benefits in patients with prostate, pancreatic, renal cell, and ovarian cancers. Improved tolerability and comparable efficacy compared with IV FU/LV in addition to oral administration make capecitabine an attractive option for the treatment of several types of cancers as well as the focus of future trials.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.