-
Comparative Study
In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems.
- K Sato, S Kikuchi, and T Yonezawa.
- Department of Orthopaedic Surgery, Fukushima Medical University, School of Medicine, Japan. ksato@cc.fmu.ac.jp
- Spine. 1999 Dec 1; 24 (23): 2468-74.
Study DesignIn vivo intradiscal pressure measurement in different postures in healthy individuals and in those with ongoing back problems.ObjectivesWith the most recent technique, 1) to analyze the influence of degeneration on the intradiscal pressure, 2) to calculate the spinal load on the L4-L5 intervertebral discs, and 3) to assess the relation between the spinal load and movement of the intervertebral motion segment.Summary Of Background DataAlmost all the data on intradiscal pressure are from the studies by Nachemson. The results from these pioneering studies have formed the basis for current knowledge about the in vivo loading conditions of the human spine. Although performed already during the 1960s and 1970s with the technique available at that time, virtually no other similar studies have been performed to corroborate the findings.MethodsThe intradiscal pressure (vertical and horizontal) was measured using an advanced pressure sensor in 8 healthy volunteers and 28 patients with ongoing low back pain, sciatica, or both at L4-L5. Among other calculations, the actual loading conditions in various body positions were calculated in relation to the angle between the two vertebrae of the studied motion segments.ResultsThe effect of respiration on intradiscal pressure was shown as a continuously periodic fluctuation in the healthy prone individual. The intradiscal pressure was significantly reduced according to the degree of disc degeneration as estimated by magnetic resonance imaging. There possibly was a difference between the vertical and horizontal pressures in the degenerated and nondegenerated discs because the nucleus pulposus was pressure-tropic property. The spinal load increased in the following order of body positions: prone, 144 N; lateral, 240 N; upright standing, 800 N; and upright sitting, 996N (P < 0.0001). In the standing and sitting body positions, the spinal load increased not only with forward bending, but also with backward bending. The spinal load was highly dependent on the angulation in the motion segment. The movements of the spine from a flexed to an extended position made the load of the spine change in a curvilinear fashion, fitting a squared equation in the standing body position. There was a correlation between the spinal load and the angle of the motion segment in the standing but not in the sitting body position.ConclusionsThe spinal load was highly dependent on the angle of the motion segment in normal discs in vivo. The intradiscal pressure in degenerated discs was significantly reduced compared with that of normal discs. However, further studies on the effect of respiratory movement on intradiscal pressure, the difference between vertical and the horizontal pressures, and the difference in the spinal load between standing and the sitting body positions are necessary. The data obtained from the current study are fundamental to understanding the pathomechanisms and biomechanical problems of disc disease.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.