-
Am. J. Physiol. Heart Circ. Physiol. · Apr 2015
Prediction of the impact of venoarterial extracorporeal membrane oxygenation on hemodynamics.
- Kazuo Sakamoto, Keita Saku, Takuya Kishi, Takamori Kakino, Atsushi Tanaka, Takafumi Sakamoto, Tomomi Ide, and Kenji Sunagawa.
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan; and kazuos@cardiol.med.kyushu-u.ac.jp.
- Am. J. Physiol. Heart Circ. Physiol. 2015 Apr 15; 308 (8): H921-30.
AbstractAlthough venoarterial extracorporeal membrane oxygenation (ECMO) was developed to rescue patients with cardiogenic shock, the impact of ECMO on hemodynamics is often unpredictable and can lead to hemodynamic collapse. In this study, we developed a framework in which we incorporated ECMO into the extended Guyton's model of circulatory equilibrium and predicted hemodynamic changes in response to ECMO. We first determined the cardiac output (CO) curves of left and right heart (to generate the integrated CO curve) without ECMO in eight normal and seven dogs with left ventricular dysfunction. Using the CO curves obtained and standard parameters for the venous return surface, we predicted the circulatory equilibrium under various levels of ECMO support. The predicted total flow (native left heart flow plus ECMO flow), right atrial pressure (PRA), and left atrial pressure (PLA) matched well with those measured [total flow: coefficient of determination (r(2)) = 0.99, standard error of estimate (SEE) = 5.8 ml·min(-1)·kg(-1), PRA: r(2) = 0.95, SEE = 0.23 mmHg, PLA: r(2) = 0.99, SEE = 0.59 mmHg]. Lastly, we estimated the CO curves under ECMO support from minute changes in hemodynamics induced by change in ECMO. From the CO curves estimated, we predicted the circulatory equilibrium. The predicted total flow (r(2) = 0.93, SEE = 0.5 ml·min(-1)·kg(-1)), PRA (r(2) = 0.99, SEE = 0.54 mmHg), and PLA (r(2) = 0.95, SEE = 0.89 mmHg) matched reasonably well with those measured. A numerical simulation indicated that ECMO support may cause pulmonary edema, if right ventricular function is compromised. We conclude that the proposed framework may enhance the benefit and reduce the risk of ECMO support in patients with critical hemodynamic conditions.Copyright © 2015 the American Physiological Society.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.