-
- Yu-Chieh Tzeng, Samuel J E Lucas, Greg Atkinson, Chris K Willie, and Philip N Ainslie.
- Physiological Rhythms Unit, Department of Surgery & Anesthesia, University of Otago, Wellington 23A Mein St., PO Box 7343, Wellington South 6242, New Zealand. shieak.tzeng@otago.ac.nz
- J. Appl. Physiol. 2010 May 1; 108 (5): 1162-8.
AbstractThe functional relationship between dynamic cerebral autoregulation (CA) and arterial baroreflex sensitivity (BRS) in humans is unknown. Given that adequate cerebral perfusion during normal physiological challenges requires the integrated control of CA and the arterial baroreflex, we hypothesized that between-individual variability in dynamic CA would be related to BRS in humans. We measured R-R interval, blood pressure, and cerebral blood flow velocity (transcranial Doppler) in 19 volunteers. BRS was estimated with the modified Oxford method (nitroprusside-phenylephrine injections) and spontaneous low-frequency (0.04-0.15) alpha-index. Dynamic CA was quantified using the rate of regulation (RoR) and autoregulatory index (ARI) derived from the thigh-cuff release technique and transfer function analysis of spontaneous oscillations in blood pressure and mean cerebral blood flow velocity. Results show that RoR and ARI were inversely related to nitroprusside BRS [R=-0.72, confidence interval (CI) -0.89 to -0.40, P=0.0005 vs. RoR; R=-0.69, CI -0.88 to -0.35, P=0.001 vs. ARI], phenylephrine BRS (R=-0.66, CI -0.86 to -0.29, P=0.0002 vs. RoR; R=-0.71, CI -0.89 to -0.38, P=0.0001 vs. ARI), and alpha-index (R=-0.70, CI -0.89 to -0.40, P=0.0008 vs. RoR; R=-0.62, CI -0.84 to -0.24, P=0.005 vs. ARI). Transfer function gain was positively related to nitroprusside BRS (R=0.62, CI 0.24-0.84, P=0.0042), phenylephrine BRS (R=0.52, CI 0.10-0.79, P=0.021), and alpha-index (R=0.69, CI 0.35-0.88, P=0.001). These findings indicate that individuals with an attenuated dynamic CA have greater BRS (and vice versa), suggesting the presence of possible compensatory interactions between blood pressure and mechanisms of cerebral blood flow control in humans. Such compensatory adjustments may account for the divergent changes in dynamic CA and BRS seen, for example, in chronic hypotension and spontaneous hypertension.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.