• J. Vasc. Surg. · Dec 2014

    Comparative Study

    Use of three-dimensional contrast-enhanced duplex ultrasound imaging during endovascular aneurysm repair.

    • David C Ormesher, Christopher Lowe, Nicola Sedgwick, Charles N McCollum, and Jonathan Ghosh.
    • Department of Vascular Surgery, University Hospital of South Manchester, Manchester, United Kingdom.
    • J. Vasc. Surg. 2014 Dec 1; 60 (6): 1468-72.

    BackgroundIodinated contrast during endovascular aneurysm repair (EVAR) is used with caution in patients with chronic kidney disease. Contrast-enhanced ultrasound (CEUS) imaging using nonnephrotoxic sulphur hexafluoride microbubble contrast is a novel imaging modality that accurately identifies and characterizes endoleaks during EVAR follow-up. We report our initial experience of using three-dimensional (3D) CEUS imaging intraoperatively as completion imaging after endograft deployment. Our aim was to compare intraoperative 3D CEUS against uniplanar angiography in the detection of endoleak, stent deformity, and renal artery perfusion during EVAR.MethodsThe study enrolled 20 patients undergoing elective conventional infrarenal EVAR, after which a completion angiogram was performed and the presence of endoleak, renal artery perfusion, or device deformity were recorded. With the patient still under anesthetic, a vascular scientist blinded to angiographic findings performed 3D CEUS and reported on the same parameters.ResultsThree endoleaks, one type I and two type II, were detected on uniplanar angiography and 13 endoleaks, 11 type II and two type I, were found using 3D CEUS imaging. Of note, one of these type I endoleaks was not seen on angiography, and this patient underwent balloon moulding of the neck with resolution of the endoleak on repeat imaging. Of the 11 type II endoleaks seen with 3D CEUS imaging, the inflow vessel was identified in nine cases. No graft deformity or limb kinking was seen in any patient. Both renal arteries could be visualized in 10 patients, whereas the target renal artery was seen in 11 patients. In the remaining patients, the renal arteries could not be visualized, mainly due to intra-abdominal gas or patient body habitus.Conclusions3D CEUS imaging detected endoleaks not seen on uniplanar digital subtraction angiography, including a clinically important type I endoleak, and was also more sensitive than 2D CEUS imaging for the detection of the source of endoleak. This technology has the potential to supplement or replace digital subtraction angiography for completion imaging to reduce the use of x-ray contrast. Intraoperative 3D CEUS has been applied to allow safe EVAR with ultralow or no iodinated contrast usage in selected cases, without compromising completion imaging.Copyright © 2014 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…