• Journal of neurochemistry · Feb 2000

    Identification of an amino acid defining the distinct properties of murine beta1 and beta3 subunit-containing GABA(A) receptors.

    • I N Cestari, K T Min, J C Kulli, and J Yang.
    • Neuroscience Graduate Program, University of Texas Southwestern Medical Center, Dallas, USA.
    • J. Neurochem. 2000 Feb 1; 74 (2): 827-38.

    AbstractMurine gamma-aminobutyric acid (GABA) type A homomeric receptors made of beta1 subunits are profoundly different, when expressed in Xenopus oocytes, from beta3 homomeric receptors. Application of the intravenous general anesthetic pentobarbital, etomidate, or propofol to beta3 homomeric receptors allows current flow. In contrast, beta1 homomers do not respond to any of these agents. Through construction of chimeric beta1/beta3 receptors, we identified a single amino acid that determines the pharmacological difference between the two beta subunits. When the serine residue present in the wild-type nonresponsive beta1 subunit is replaced by an asparagine found in the same position in the beta3 subunit, the resulting point-mutated beta1S265N forms receptors responsive to intravenous general anesthetics, like the wild-type beta3 subunits. Conversely, after mutation of the wild-type beta3 to beta3N265S, the homomeric receptor loses its ability to respond to these same general anesthetics. Wild-type-to-mutant titration experiments showed that the nonresponsive phenotype is dominant: A single nonresponsive residue within a pentameric receptor is sufficient to render the receptor nonresponsive. In alpha1betax or alpha1betaxgamma2 heteromeric receptors, the same residue manifests as a partial determinant of the degree of potentiation of the GABA-induced current by some general anesthetics. The location of this amino acid at the extracellular end of the second transmembrane segment, its influence in both homomeric and heteromeric receptor function, and its dominant behavior suggest that this residue of the beta subunit is involved in an allosteric modulation of the receptor.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…