-
- Nikolaus Berger-Roscher, Gloria Casaroli, Volker Rasche, Tomaso Villa, Fabio Galbusera, and Hans-Joachim Wilke.
- Institute of Orthopedic Research and Biomechanics, Trauma Research Center Ulm (ZTF), Ulm University, Ulm, Germany.
- Spine. 2017 Jan 15; 42 (2): E78-E85.
Study DesignHigh resolution imaging investigation of the failure of ovine lumbar intervertebral discs under complex loading.ObjectiveTo investigate how different loading combinations influence the mechanism and extent of intervertebral disc failure.Summary Of Background DataEven though there has been extensive research on how an intervertebral disc fails under various conditions, failure mechanisms remain unclear. In addition, the influence of different loading directions on the mode and extent of failure under complex loading was never systematically investigated.MethodsThirty ovine lumbar spinal segments were loaded in a newly developed, dynamic, 6-degree-of-freedom (6-DOF) disc loading simulator under five combinations of the following loading parameters: 0°-13° flexion, 0°-10° lateral bending, 0°-4° axial rotation, 0-800 N axial compression. A total of 1000 cycles at 2 Hz were done. After testing, imaging of the discs was performed in an ultra-high field magnetic resonance imaging (11.7 T) scanner and with a micro-computed tomography scanner.ResultsA total of 13 large endplate junction failures (EPJFs) occurred, of which all but one maintained an intact cartilaginous endplate. Ten out of 13 EPJFs occurred caudally. Four solely annulus failures occurred affecting only the outer posterior annulus. A herniation was not observed. The maximum moments measured in any group (median) were 52.5 N · m flexion, 16.5 N · m lateral bending, and 14.0 N · m axial rotation.ConclusionComplex loading protocols could lead to EPJFs (76%) and annulus failures (24%) in vitro. The combination of flexion, lateral bending, axial rotation, and axial compression bears the highest risk for caudal EPJF. Flexion without lateral bending and vice versa has the lowest risk for failure. Both axial compression and axial rotation seem to have a smaller influence than flexion and lateral bending. It seems that a herniation requires an additional failure of the cartilaginous endplate, likely initiated by further axial compressive load.Level Of Evidence4.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.