• Spine J · Mar 2016

    Patient and surgeon radiation exposure during spinal instrumentation using intraoperative computed tomography-based navigation.

    • Daniel Mendelsohn, Jason Strelzow, Nicolas Dea, Nancy L Ford, Juliet Batke, Andrew Pennington, Kaiyun Yang, Tamir Ailon, Michael Boyd, Marcel Dvorak, Brian Kwon, Scott Paquette, Charles Fisher, and John Street.
    • Combined Neurosurgical and Orthopedic Spine Program, Vancouver General Hospital, Departments of Orthopedics and Neurosurgery, University of British Columbia, Vancouver, Canada; Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, Canada.
    • Spine J. 2016 Mar 1; 16 (3): 343-54.

    Background ContextImaging modalities used to visualize spinal anatomy intraoperatively include X-ray studies, fluoroscopy, and computed tomography (CT). All of these emit ionizing radiation.PurposeRadiation emitted to the patient and the surgical team when performing surgeries using intraoperative CT-based spine navigation was compared.Study Design/SettingThis is a retrospective cohort case-control study.Patient SampleSeventy-three patients underwent CT-navigated spinal instrumentation and 73 matched controls underwent spinal instrumentation with conventional fluoroscopy.Outcome MeasuresEffective doses of radiation to the patient when the surgical team was inside and outside of the room were analyzed. The number of postoperative imaging investigations between navigated and non-navigated cases was compared.MethodsIntraoperative X-ray imaging, fluoroscopy, and CT dosages were recorded and standardized to effective doses. The number of postoperative imaging investigations was compared with the matched cohort of surgical cases. A literature review identified historical radiation exposure values for fluoroscopic-guided spinal instrumentation.ResultsThe 73 navigated operations involved an average of 5.44 levels of instrumentation. Thoracic and lumbar instrumentations had higher radiation emission from all modalities (CT, X-ray imaging, and fluoroscopy) compared with cervical cases (6.93 millisievert [mSv] vs. 2.34 mSv). Major deformity and degenerative cases involved more radiation emission than trauma or oncology cases (7.05 mSv vs. 4.20 mSv). On average, the total radiation dose to the patient was 8.7 times more than the radiation emitted when the surgical team was inside the operating room. Total radiation exposure to the patient was 2.77 times the values reported in the literature for thoracolumbar instrumentations performed without navigation. In comparison, the radiation emitted to the patient when the surgical team was inside the operating room was 2.50 lower than non-navigated thoracolumbar instrumentations. The average total radiation exposure to the patient was 5.69 mSv, a value less than a single routine lumbar CT scan (7.5 mSv). The average radiation exposure to the patient in the present study was approximately one quarter the recommended annual occupational radiation exposure. Navigation did not reduce the number of postoperative X-rays or CT scans obtained.ConclusionsIntraoperative CT navigation increases the radiation exposure to the patient and reduces the radiation exposure to the surgeon when compared with values reported in the literature. Intraoperative CT navigation improves the accuracy of spine instrumentation with acceptable patient radiation exposure and reduced surgical team exposure. Surgeons should be aware of the implications of radiation exposure to both the patient and the surgical team when using intraoperative CT navigation.Copyright © 2016 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…