• J. Neurosci. · Jan 1995

    Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms.

    • A Ylinen, A Bragin, Z Nádasdy, G Jandó, I Szabó, A Sik, and G Buzsáki.
    • Center for Molecular and Behavioral Neuroscience, Rutgers, State University of New Jersey, Newark 07102.
    • J. Neurosci. 1995 Jan 1; 15 (1 Pt 1): 30-46.

    AbstractSharp wave bursts, induced by a cooperative discharge of CA3 pyramidal cells, are the most synchronous physiological pattern in the hippocampus. In conjunction with sharp wave bursts, CA1 pyramidal cells display a high-frequency (200 Hz) network oscillation (ripple). In the present study extracellular field and unit activity was recorded simultaneously from 16 closely spaces sites in the awake rat and the intracellular activity of CA1 pyramidal cells during the network oscillation was studied under anesthesia. Current source density analysis of the high-frequency oscillation revealed circumscribed sinks and sources in the vicinity of the pyramidal layer. Single pyramidal cells discharged at a low frequency but were phase locked to the negative peak of the locally derived field oscillation. Approximately 10% of the simultaneously recorded pyramidal cells fired during a given oscillatory event. Putative interneurons increased their discharge rates during the field ripples severalfold and often maintained a 200 Hz frequency during the oscillatory event. Under urethane and ketamine anesthesia the frequency of ripples was slower (100-120 Hz) than in the awake rat (180-200 Hz). Halothane anesthesia prevented the occurrence of high-frequency field oscillations in the CA1 region. Both the amplitude (1-4 mV) and phase of the intracellular ripple, but not its frequency, were voltage dependent. The amplitude of intracellular ripple was smallest between -70 and -80 mV. The phase of intracellular oscillation relative to the extracellular ripple reversed when the membrane was hyperpolarized more than -80 mV. A histologically verified CA1 basket cell increased its firing rate during the network oscillation and discharged at the frequency of the extracellular ripple. These findings indicate that the intracellularly recorded fast oscillatory rhythm is not solely dependent on membrane currents intrinsic to the CA1 pyramidal cells but it is a network driven phenomenon dependent upon the participation of inhibitory interneurons. We hypothesize that fast field oscillation (200 Hz) in the CA1 region reflects summed IPSPs in pyramidal cells as a result of high-frequency barrage of interneurons. The sharp wave associated synchronous discharge of pyramidal cells in the millisecond range can exert a powerful influence on retrohippocampal targets and may facilitate the transfer of transiently stored memory traces from the hippocampus to the entorhinal cortex.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.