-
- Gerard Callejo, Aida Castellanos, Marta Castany, Arcadi Gual, Carolina Luna, M Carmen Acosta, Juana Gallar, Jonathan P Giblin, and Xavier Gasull.
- aNeurophysiology Laboratory, Department of Physiological Sciences I, Medical School, Universitat de Barcelona, Barcelona, Spain bInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain cDepartment of Ophthalmology, Hospital Vall d'Hebron, Barcelona, Spain dInstituto de Neurociencias, Universidad Miguel Hernandez-CSIC, San Juan de Alicante, Spain.
- Pain. 2015 Mar 1;156(3):483-95.
AbstractSensory nerve fibers innervating the ocular anterior surface detect external stimuli producing innocuous and painful sensations. Protons are among the first mediators released by damaged cells during inflammation, tissue injury, or other chronic ophthalmic conditions. We studied whether acid-sensing ion channels (ASICs) are expressed in corneal sensory neurons and their roles in the response to moderate acidifications of the ocular surface and in pathologies producing ocular surface inflammation. Moderate acidic pH (6.6) activated ASIC-like currents in corneal sensory neurons, which were blocked by ASIC1- or ASIC3-specific toxins. Acidic pH depolarizes corneal sensory neurons to fire action potentials, an effect blocked by the ASIC3 inhibitor APETx2. 2-Guanidino-4-methylquinazoline, an ASIC3 agonist, activated a population of corneal polymodal sensory nerve fibers and significantly increased the blinking and tearing rate. The nocifensive behaviors produced by application of either a moderate acidic stimulus or ophthalmic drugs formulated in acidic solution were abolished by ASIC blockers. In a model of allergic keratoconjunctivitis, nocifensive behavior was greatly reduced by ASIC3 blockade, presumably by reducing nociceptor sensitization during the inflammatory process. Our results show that, in addition to the established role of TRPV1, ASICs play a significant role in the detection of acidic insults at the ocular surface. The identification of ASICs in corneal neurons and their alterations during different diseases is critical for the understanding of sensory ocular pathophysiology. They are likely to mediate some of the discomfort sensations accompanying several ophthalmic formulations and may represent novel targets for the development of new therapeutics for ocular pathologies.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.