• Crit Care Resusc · Mar 2015

    Endotoxaemic myocardial dysfunction: the role of coronary driving pressure in subendocardial perfusion.

    • Clara B Lorigados, Suely K Ariga, Tiago R Batista, Irineu T Velasco, and Francisco G Soriano.
    • Institute of Orthopaedics and Traumatology, Clinical Hospital, Faculty of Medicine, University of São Paulo, São Paulo, Brazil. gsoriano@usp.br.
    • Crit Care Resusc. 2015 Mar 1;17(1):12-22.

    ObjectiveTo investigate the role of coronary driving pressure (CDP) in myocardial microcirculatory blood flow during sepsis. We hypothesised that in septic shock there is an impaired autoregulation of microcirculation, and blood flow is totally dependent on CDP. We analysed the effect of lipopolysaccharide (LPS)-induced shock on myocardial microcirculation, separating subendocardial and epicardial areas. We then studied the effect of CDP increases using noradrenaline (NOR) or metaraminol (Aramine [ARA]) on myocardial microcirculation and function, and we analysed the effect of volume infusion on CDP and myocardial function.Design And SettingEndotoxaemia was induced in male Wistar rats by an intraperitoneal injection of LPS 10 mg/kg. Animals were divided into a control (CT) group, an LPS-injected group, and an LPS-injected group treated with saline fluid, NOR or ARA.Main Outcome MeasuresNinety minutes later, a haemodynamic evaluation was performed. NOR or ARA were used to manage the mean arterial pressure (MAP) and CDP, and we inserted a catheter into the left ventricle to measure cardiac parameters. To measure blood flow in the myocardium and other organs, microspheres were introduced into the left ventricle using an infusion pump.ResultsAfter LPS treatment, left ventricular (LV) systolic function (dP/dt max) and diastolic function (dP/dt min) decreased by 34% and 15%, respectively, and load-independent indices (LV contractility in ejection phase and dP/dt max÷end-diastolic volume) were reduced. The CDP was also reduced (by 58%) in the endotoxaemic rats. Myocardial blood flow was reduced (by 80%) in animals with an MAP≤65 mmHg. NOR increased the CDP (LPS, 38 mmHg [SEM, 2 mmHg]; LPS+NOR, 59 mmHg [SEM, 3 mmHg]) and microcirculatory perfusion (LPS, 2 mL/min/g tissue [SEM, 0.6 mL/min/g]; LPS+NOR, 6.2 mL/min/g [SEM, 0.8 mL/min/g]). ARA was also effective in improve microcirculation but saline volume infusion was ineffective in improving CDP or myocardial function. CDP showed a significant correlation with subendocardial blood flow.ConclusionsMyocardial blood flow in the LV subendocardium and the right ventricle decreases in endotoxaemic rats. Increasing CDP improves myocardial blood flow and function. Thus, in endotoxaemia, microcirculatory blood flow is pressure dependent, suggesting that it may be beneficial to treat patients with sepsis using a higher CDP.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…