• Pain · May 2015

    Imaging signatures of altered brain responses in small-fiber neuropathy: reduced functional connectivity of the limbic system after peripheral nerve degeneration.

    • Paul-Chen Hsieh, Ming-Tsung Tseng, Chi-Chao Chao, Yea-Huey Lin, Wen-Yih I Tseng, Kuan-Hong Liu, Ming-Chang Chiang, and Sung-Tsang Hsieh.
    • aDepartment of Medicine, National Taiwan University, Taipei, Taiwan bDepartment of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan cGraduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan Departments of dNeurology and eMedical Imaging, National Taiwan University Hospital, Taipei, Taiwan fCenter for Optoelectronic Biomedicine, National Taiwan University College of Medicine, Taipei, Taiwan gDepartment of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan.
    • Pain. 2015 May 1;156(5):904-16.

    AbstractSmall-fiber neuropathy (SFN) is hallmarked by degeneration of small unmyelinated peripheral nerve fibers in the skin. Traditionally, it has been considered as a pure disorder of the peripheral nervous system. Nevertheless, previous work found that dysfunction of skin nerves led to abnormal recruitment of pain-related regions, suggesting that the brain may be affected in SFN. This report combined structural and functional magnetic resonance imaging to identify structural and functional changes in the brain of 19 patients with SFN compared with 17 healthy controls. We applied tensor-based morphometry to detect brain structural alterations in SFN. Greater volume reduction in pain-processing regions, particularly the bilateral anterior cingulate cortices (ACCs), was associated with greater depletion of intraepidermal nerve fibers, a pathological biomarker of skin nerve degeneration. Based on the hypothesis that structural alterations in the pain-processing regions might impair their functional connectivity, we further applied psychophysiological interaction analysis to assess functional connectivity of the ACCs during noxious heat stimulation. There was significant reduction in functional connectivity from the ACCs to the limbic areas (the parahippocampal gyrus and the posterior cingulate cortex), pain-processing area (the insula), and visuospatial areas (the cuneus). Moreover, the degree of reduction in functional connectivity for the ACC to the amygdala and the precuneus was linearly correlated with the severity of intraepidermal nerve fiber depletion. Our findings suggest that SFN is not a pure peripheral nervous system disorder. The pain-related brain networks tend to break into functionally independent components, with severity linked to the degree of skin nerve degeneration.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.