• Biomed Tech (Berl) · May 2004

    Comparative Study Clinical Trial

    Automated EEG preprocessing during anaesthesia: new aspects using artificial neural networks.

    • C Jeleazcov, S Egner, F Bremer, and H Schwilden.
    • Klinik für Anästhesiologie der Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen. christian.jeleazcov@kfa.imed.uni-erlangen.de
    • Biomed Tech (Berl). 2004 May 1; 49 (5): 125-31.

    AbstractThe computer-aided detection of artefacts became an essential task with increasing automation of quantitative electroencephalogram (EEG) analysis during anaesthesiological applications. The different algorithms published so far required individual manual adjustment or have been based on limited decision criteria. In this study, we developed an artificial neural networks-(ANN-)aided method for automated detection of artefacts and EEG suppression periods. 72 hr EEG recorded before, during and after anaesthesia with propofol have been evaluated. Selected parameterized patterns of 0.25 s length were used to train the ANN (22 input, 8 hidden and 4 output neurons) with error back propagation. The detection performance of the ANN-aided method was tested with processing epochs between 1 to10 s. Related to examiner EEG evaluation, the average detection performance of the method was 72% sensitivity and 80% specificity for artefacts and 90% sensitivity and 92% specificity for EEG suppression. The improvement in signal-to-noise ratio with automated artefact processing was 1.39 times for the spectral edge frequency 95 (SEF95) and 1.89 times for the approximate entropy (ApEn). We conclude that ANN-aided preprocessing provide an useful tool for automated EEG evaluation in anaesthesiological applications.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…