• Exp Brain Res · Aug 2007

    Parallels in control of voluntary and perturbation-evoked reach-to-grasp movements: EMG and kinematics.

    • William H Gage, Karl F Zabjek, Stephen W Hill, and William E McIlroy.
    • Toronto Rehabilitation Institute, 550 University Avenue, Toronto, ON Canada, M5G 2A2. whgage@yorku.ca
    • Exp Brain Res. 2007 Aug 1; 181 (4): 627-37.

    AbstractTo determine the potential differences in control underlying compensatory and voluntary reach-to-grasp movements the current study compared the kinematic and electromyographic profiles associated with upper limb movement. Postural perturbations were delivered to evoke compensatory reach-to-grasp in ten healthy young adult volunteers while seated on a chair that tilted as an inverted pendulum in the frontal plane. Participants reached to grasp a laterally positioned stable handhold and pulled (or pushed) to return the chair to vertical. The distinguishing characteristic between the two behaviors was the onset latency and speed of movement. Consistent with compensatory balance reactions, the perturbation-evoked reach response was initiated very rapidly (137 vs. 239 ms for voluntary). As well the movement time was shorter, and peak velocity was greater for PERT movements. In spite of the profound differences in timing, the sequence of muscle activity onsets and the order of specific kinematic events were not different between maximum velocity voluntary (VOL) and perturbation-evoked (PERT) reach-to-grasp movements. Peak velocity and grasp aperture occurred prior to hand contact with the target for PERT and VOL movements, and wrist trajectory was influenced by the direction of perturbation relative to the target. To achieve such target specific control for responses initiated within 100 ms of the perturbation, and when characteristics of body movement were unpredictable, the perturbation-evoked movements would need to incorporate sensory cues associated with body movement relative to the target into the earliest aspects of the movement. This suggests reliance on an internal spatial map constructed prior to the onset of perturbation. Parallels in electromyographic and kinematic profiles between compensatory and voluntary reach-to-grasp movements, in spite of temporal differences, lead to the view they are controlled by common neural mechanisms.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.